WANG Zhenfeng, SUN Zhipeng, ZHANG Daojun, ZHU Jitian, LI Xushen, HUANG Baojia, GUO Minggang, JIANG Rufeng. Geology and hydrocarbon accumulations in the deepwater of the northwestern South China Sea—with focus on natural gas[J]. Acta Oceanologica Sinica, 2015, 34(10): 57-70. doi: 10.1007/s13131-015-0715-7
Citation: Song Gao, Juan Huang, Yaru Li, Guiyan Liu, Fan Bi, Zhipeng Bai. A forecasting model for wave heights based on a long short-term memory neural network[J]. Acta Oceanologica Sinica, 2021, 40(1): 62-69. doi: 10.1007/s13131-020-1680-3

A forecasting model for wave heights based on a long short-term memory neural network

doi: 10.1007/s13131-020-1680-3
Funds:  The National Key R&D Program of China under contract No. 2016YFC1402103.
More Information
  • Corresponding author: E-mail: liyaru@ncs.mnr.gov.cn
  • Received Date: 2020-04-12
  • Accepted Date: 2020-06-02
  • Available Online: 2021-04-21
  • Publish Date: 2021-01-25
  • To explore new operational forecasting methods of waves, a forecasting model for wave heights at three stations in the Bohai Sea has been developed. This model is based on long short-term memory (LSTM) neural network with sea surface wind and wave heights as training samples. The prediction performance of the model is evaluated, and the error analysis shows that when using the same set of numerically predicted sea surface wind as input, the prediction error produced by the proposed LSTM model at Sta. N01 is 20%, 18% and 23% lower than the conventional numerical wave models in terms of the total root mean square error (RMSE), scatter index (SI) and mean absolute error (MAE), respectively. Particularly, for significant wave height in the range of 3–5 m, the prediction accuracy of the LSTM model is improved the most remarkably, with RMSE, SI and MAE all decreasing by 24%. It is also evident that the numbers of hidden neurons, the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy. However, the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used. The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training. Overall, long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting.
  • [1]
    Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4): 7649–7666. doi: 10.1029/98JC02622
    [2]
    Chaudhari S, Balasubramanian R, Gangopadhyay A. 2008. Upwelling detection in AVHRR sea surface temperature (SST) images using neural-network framework. In: Proceedings of IGARSS 2008–2008 IEEE International Geoscience and Remote Sensing Symposium. Boston, MA, USA: IEEE
    [3]
    Deshmukh A N, Deo M C, Bhaskaran P K, et al. 2016. Neural-network-based data assimilation to improve numerical ocean wave forecast. IEEE Journal of Oceanic Engineering, 41(4): 944–953. doi: 10.1109/JOE.2016.2521222
    [4]
    Duan Wenyang, Huang Limin, Han Yang, et al. 2016. A hybrid EMD-AR model for nonlinear and non-stationary wave forecasting. Journal of Zhejiang University-Science A, 17(2): 115–129. doi: 10.1631/jzus.A1500164
    [5]
    Filippo A, Torres Jr A R, Kjerfve B, et al. 2012. Application of artificial neural network (ANN) to improve forecasting of sea level. Ocean & Coastal Management, 55: 101–110. doi: 10.1016/j.ocecoaman.2011.09.007
    [6]
    Gao Song, Zhao Peng, Pan Bin, et al. 2018. A nowcasting model for the prediction of typhoon tracks based on a long short term memory neural network. Acta Oceanologica Sinica, 37(5): 8–12. doi: 10.1007/s13131-018-1219-z
    [7]
    Hasselmann K, Barnett T P, Bouws E, et al. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Erganzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe A, 1–95
    [8]
    Hinton G E, Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504–507. doi: 10.1126/science.1127647
    [9]
    Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
    [10]
    James S C, Zhang Yushan, O’Donncha F. 2018. A machine learning framework to forecast wave conditions. Coastal Engineering, 137: 1–10. doi: 10.1016/j.coastaleng.2018.03.004
    [11]
    Jiang Zongli. 2001. Introduction to Artificial Neural Networks (in Chinese). Beijing: Higher Education Press
    [12]
    Kuang Xiaodi, Wang Zhaoyi, Zhang Miaoyin, et al. 2016. An interpretation scheme of numerical near-shore sea-water temperature forecast based on BPNN. Oceanologia et Limnologia Sinica (in Chinese), 47(6): 1107–1115
    [13]
    Kumar N K, Savitha R, Al Mamun A. 2017. Regional ocean wave height prediction using sequential learning neural networks. Ocean Engineering, 129: 605–612. doi: 10.1016/j.oceaneng.2016.10.033
    [14]
    LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521(7553): 436–444. doi: 10.1038/nature14539
    [15]
    Lipton Z C, Berkowitz J, Elkan C. 2015. A critical review of recurrent neural networks for sequence learning. arXiv preprint, arXiv: 1506.00019
    [16]
    Liu Hui, Wang Jing. 2008. Estimation of ocean upper mixed layer depth using artificial neural network. Journal of Tropical Oceanography (in Chinese), 27(3): 9–13
    [17]
    Skamarock W C, Klemp J B, Dudhia J, et al. 2005. A description of the advanced research WRF version 2 (No. NCAR/TN-468+STR). University Corporation for Atmospheric Research. doi: 10.5065/D6DZ069T
    [18]
    Tissot P E, Cox D T, Michaud P. 2001. Neural network forecasting of storm surges along the gulf of Mexico. In: Fourth International Symposium on Ocean Wave Measurement and Analysis. San Francisco, California, United States: American Society of Civil Engineers, 1535–1544, doi: 10.1061/40604(273)155
    [19]
    Vilibić I, Šepić J, Mihanović H, et al. 2016. Self-organizing maps-based ocean currents forecasting system. Scientific Reports, 6(1): 22924. doi: 10.1038/srep22924
    [20]
    Wu Lingjuan, Gao Song, Liu Aichao, et al. 2015. Operational system of monitoring, forecasting and warning on marine disaster for Shandong Province. Journal of Institute of Disaster Prevention (in Chinese), 17(2): 61–69
    [21]
    Yang Haofan, Chen Y P P. 2019. Hybrid deep learning and empirical mode decomposition model for time series applications. Expert Systems with Applications, 120: 128–138. doi: 10.1016/j.eswa.2018.11.019
    [22]
    Zhang Wenxiao, Gao Guodong, Mu Guangyu. 2006. Study on the model of salinity based on back-propagation artificial neural network. Ocean Technology (in Chinese), 25(4): 39–41
    [23]
    Zhang Dan, Peng Xiangang, Pan Keda, et al. 2019. A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine. Energy Conversion and Management, 180: 338–357. doi: 10.1016/j.enconman.2018.10.089
  • Relative Articles

  • Cited by

    Periodical cited type(10)

    1. Yongcai Yang, Xiaojun Xie, Youchuan Li, et al. Formation and distribution of coal measure source rocks in the Eocene Pinghu Formation in the Pinghu Slope of the Xihu Depression, East China Sea Shelf Basin. Acta Oceanologica Sinica, 2023, 42(3): 254. doi:10.1007/s13131-023-2176-8
    2. Shuangshuang Zhang, Kangliang Guo, Zhiquan Zhang. Segmented superimposed model of near-bore reservoir pollution skin factor for low porosity and permeability sandstone horizontal gas wells. Frontiers in Earth Science, 2023, 11 doi:10.3389/feart.2023.1335629
    3. Zigui Chen, Tao Jiang, Zenggui Kuang, et al. 琼东南盆地天然气水合物与浅层气共生体系成藏特征. Earth Science-Journal of China University of Geosciences, 2022, 47(5): 1619. doi:10.3799/dqkx.2022.094
    4. Min Xu, Dujie Hou, Xiong Cheng, et al. Aliphatic biomarker signatures of early Oligocene—early Miocene source rocks in the central Qiongdongnan Basin: Source analyses of organic matter. Acta Oceanologica Sinica, 2022. doi:10.1007/s13131-022-2082-5
    5. Chao Li, Guojun Chen, Qianshan Zhou, et al. Multistage geomorphic evolution of the Central Canyon in the Qiongdongnan Basin, NW South China Sea. Marine Geophysical Research, 2021, 42(3) doi:10.1007/s11001-021-09448-8
    6. Hangyu Li, Ming Zhang, Hon Chung Lau, et al. China's deepwater development: subsurface challenges and opportunities. Journal of Petroleum Science and Engineering, 2020, 195: 107761. doi:10.1016/j.petrol.2020.107761
    7. Chao Lei, Peter D. Clift, Jianye Ren, et al. A rapid shift in the sediment routing system of Lower-Upper Oligocene strata in the Qiongdongnnan Basin (Xisha Trough), Northwest South China Sea. Marine and Petroleum Geology, 2019, 104: 249. doi:10.1016/j.marpetgeo.2019.03.012
    8. Heting HUANG, Baojia HUANG, Yiwen HUANG, et al. Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in western South China Sea: A case study of Lingshui 17-2 gas field in Qiongdongnan Basin. Petroleum Exploration and Development, 2017, 44(3): 409. doi:10.1016/S1876-3804(17)30047-2
    9. Chao Lei, Jianye Ren. Hyper-extended rift systems in the Xisha Trough, northwestern South China Sea: Implications for extreme crustal thinning ahead of a propagating ocean. Marine and Petroleum Geology, 2016, 77: 846. doi:10.1016/j.marpetgeo.2016.07.022
    10. Hangyu Li, Ming Zhang, Hon Lau, et al. China's Deepwater Field Development: Subsurface Challenges and Opportunities. Day 3 Wed, May 06, 2020, doi:10.4043/30726-MS

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.7 %FULLTEXT: 26.7 %META: 70.2 %META: 70.2 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 0.5 %其他: 0.5 %Algeria: 1.3 %Algeria: 1.3 %Australia: 0.7 %Australia: 0.7 %Brazil: 0.2 %Brazil: 0.2 %China: 37.7 %China: 37.7 %France: 0.7 %France: 0.7 %Hong Kong, China: 1.6 %Hong Kong, China: 1.6 %India: 2.0 %India: 2.0 %Indonesia: 0.5 %Indonesia: 0.5 %Japan: 0.2 %Japan: 0.2 %Philippines: 0.5 %Philippines: 0.5 %Reserved: 0.7 %Reserved: 0.7 %Romania: 0.9 %Romania: 0.9 %Russian Federation: 11.4 %Russian Federation: 11.4 %Singapore: 0.5 %Singapore: 0.5 %Spain: 0.7 %Spain: 0.7 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 38.8 %United States: 38.8 %Viet Nam: 0.5 %Viet Nam: 0.5 %其他AlgeriaAustraliaBrazilChinaFranceHong Kong, ChinaIndiaIndonesiaJapanPhilippinesReservedRomaniaRussian FederationSingaporeSpainUnited KingdomUnited StatesViet Nam

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (693) PDF downloads(51) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return