Citation: | Song Gao, Juan Huang, Yaru Li, Guiyan Liu, Fan Bi, Zhipeng Bai. A forecasting model for wave heights based on a long short-term memory neural network[J]. Acta Oceanologica Sinica, 2021, 40(1): 62-69. doi: 10.1007/s13131-020-1680-3 |
[1] |
Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4): 7649–7666. doi: 10.1029/98JC02622
|
[2] |
Chaudhari S, Balasubramanian R, Gangopadhyay A. 2008. Upwelling detection in AVHRR sea surface temperature (SST) images using neural-network framework. In: Proceedings of IGARSS 2008–2008 IEEE International Geoscience and Remote Sensing Symposium. Boston, MA, USA: IEEE
|
[3] |
Deshmukh A N, Deo M C, Bhaskaran P K, et al. 2016. Neural-network-based data assimilation to improve numerical ocean wave forecast. IEEE Journal of Oceanic Engineering, 41(4): 944–953. doi: 10.1109/JOE.2016.2521222
|
[4] |
Duan Wenyang, Huang Limin, Han Yang, et al. 2016. A hybrid EMD-AR model for nonlinear and non-stationary wave forecasting. Journal of Zhejiang University-Science A, 17(2): 115–129. doi: 10.1631/jzus.A1500164
|
[5] |
Filippo A, Torres Jr A R, Kjerfve B, et al. 2012. Application of artificial neural network (ANN) to improve forecasting of sea level. Ocean & Coastal Management, 55: 101–110. doi: 10.1016/j.ocecoaman.2011.09.007
|
[6] |
Gao Song, Zhao Peng, Pan Bin, et al. 2018. A nowcasting model for the prediction of typhoon tracks based on a long short term memory neural network. Acta Oceanologica Sinica, 37(5): 8–12. doi: 10.1007/s13131-018-1219-z
|
[7] |
Hasselmann K, Barnett T P, Bouws E, et al. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Erganzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe A, 1–95
|
[8] |
Hinton G E, Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504–507. doi: 10.1126/science.1127647
|
[9] |
Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
|
[10] |
James S C, Zhang Yushan, O’Donncha F. 2018. A machine learning framework to forecast wave conditions. Coastal Engineering, 137: 1–10. doi: 10.1016/j.coastaleng.2018.03.004
|
[11] |
Jiang Zongli. 2001. Introduction to Artificial Neural Networks (in Chinese). Beijing: Higher Education Press
|
[12] |
Kuang Xiaodi, Wang Zhaoyi, Zhang Miaoyin, et al. 2016. An interpretation scheme of numerical near-shore sea-water temperature forecast based on BPNN. Oceanologia et Limnologia Sinica (in Chinese), 47(6): 1107–1115
|
[13] |
Kumar N K, Savitha R, Al Mamun A. 2017. Regional ocean wave height prediction using sequential learning neural networks. Ocean Engineering, 129: 605–612. doi: 10.1016/j.oceaneng.2016.10.033
|
[14] |
LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521(7553): 436–444. doi: 10.1038/nature14539
|
[15] |
Lipton Z C, Berkowitz J, Elkan C. 2015. A critical review of recurrent neural networks for sequence learning. arXiv preprint, arXiv: 1506.00019
|
[16] |
Liu Hui, Wang Jing. 2008. Estimation of ocean upper mixed layer depth using artificial neural network. Journal of Tropical Oceanography (in Chinese), 27(3): 9–13
|
[17] |
Skamarock W C, Klemp J B, Dudhia J, et al. 2005. A description of the advanced research WRF version 2 (No. NCAR/TN-468+STR). University Corporation for Atmospheric Research. doi: 10.5065/D6DZ069T
|
[18] |
Tissot P E, Cox D T, Michaud P. 2001. Neural network forecasting of storm surges along the gulf of Mexico. In: Fourth International Symposium on Ocean Wave Measurement and Analysis. San Francisco, California, United States: American Society of Civil Engineers, 1535–1544, doi: 10.1061/40604(273)155
|
[19] |
Vilibić I, Šepić J, Mihanović H, et al. 2016. Self-organizing maps-based ocean currents forecasting system. Scientific Reports, 6(1): 22924. doi: 10.1038/srep22924
|
[20] |
Wu Lingjuan, Gao Song, Liu Aichao, et al. 2015. Operational system of monitoring, forecasting and warning on marine disaster for Shandong Province. Journal of Institute of Disaster Prevention (in Chinese), 17(2): 61–69
|
[21] |
Yang Haofan, Chen Y P P. 2019. Hybrid deep learning and empirical mode decomposition model for time series applications. Expert Systems with Applications, 120: 128–138. doi: 10.1016/j.eswa.2018.11.019
|
[22] |
Zhang Wenxiao, Gao Guodong, Mu Guangyu. 2006. Study on the model of salinity based on back-propagation artificial neural network. Ocean Technology (in Chinese), 25(4): 39–41
|
[23] |
Zhang Dan, Peng Xiangang, Pan Keda, et al. 2019. A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine. Energy Conversion and Management, 180: 338–357. doi: 10.1016/j.enconman.2018.10.089
|