Citation: | Song Gao, Juan Huang, Yaru Li, Guiyan Liu, Fan Bi, Zhipeng Bai. A forecasting model for wave heights based on a long short-term memory neural network[J]. Acta Oceanologica Sinica, 2021, 40(1): 62-69. doi: 10.1007/s13131-020-1680-3 |
[1] |
Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4): 7649–7666. doi: 10.1029/98JC02622
|
[2] |
Chaudhari S, Balasubramanian R, Gangopadhyay A. 2008. Upwelling detection in AVHRR sea surface temperature (SST) images using neural-network framework. In: Proceedings of IGARSS 2008–2008 IEEE International Geoscience and Remote Sensing Symposium. Boston, MA, USA: IEEE
|
[3] |
Deshmukh A N, Deo M C, Bhaskaran P K, et al. 2016. Neural-network-based data assimilation to improve numerical ocean wave forecast. IEEE Journal of Oceanic Engineering, 41(4): 944–953. doi: 10.1109/JOE.2016.2521222
|
[4] |
Duan Wenyang, Huang Limin, Han Yang, et al. 2016. A hybrid EMD-AR model for nonlinear and non-stationary wave forecasting. Journal of Zhejiang University-Science A, 17(2): 115–129. doi: 10.1631/jzus.A1500164
|
[5] |
Filippo A, Torres Jr A R, Kjerfve B, et al. 2012. Application of artificial neural network (ANN) to improve forecasting of sea level. Ocean & Coastal Management, 55: 101–110. doi: 10.1016/j.ocecoaman.2011.09.007
|
[6] |
Gao Song, Zhao Peng, Pan Bin, et al. 2018. A nowcasting model for the prediction of typhoon tracks based on a long short term memory neural network. Acta Oceanologica Sinica, 37(5): 8–12. doi: 10.1007/s13131-018-1219-z
|
[7] |
Hasselmann K, Barnett T P, Bouws E, et al. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Erganzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe A, 1–95
|
[8] |
Hinton G E, Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504–507. doi: 10.1126/science.1127647
|
[9] |
Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
|
[10] |
James S C, Zhang Yushan, O’Donncha F. 2018. A machine learning framework to forecast wave conditions. Coastal Engineering, 137: 1–10. doi: 10.1016/j.coastaleng.2018.03.004
|
[11] |
Jiang Zongli. 2001. Introduction to Artificial Neural Networks (in Chinese). Beijing: Higher Education Press
|
[12] |
Kuang Xiaodi, Wang Zhaoyi, Zhang Miaoyin, et al. 2016. An interpretation scheme of numerical near-shore sea-water temperature forecast based on BPNN. Oceanologia et Limnologia Sinica (in Chinese), 47(6): 1107–1115
|
[13] |
Kumar N K, Savitha R, Al Mamun A. 2017. Regional ocean wave height prediction using sequential learning neural networks. Ocean Engineering, 129: 605–612. doi: 10.1016/j.oceaneng.2016.10.033
|
[14] |
LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521(7553): 436–444. doi: 10.1038/nature14539
|
[15] |
Lipton Z C, Berkowitz J, Elkan C. 2015. A critical review of recurrent neural networks for sequence learning. arXiv preprint, arXiv: 1506.00019
|
[16] |
Liu Hui, Wang Jing. 2008. Estimation of ocean upper mixed layer depth using artificial neural network. Journal of Tropical Oceanography (in Chinese), 27(3): 9–13
|
[17] |
Skamarock W C, Klemp J B, Dudhia J, et al. 2005. A description of the advanced research WRF version 2 (No. NCAR/TN-468+STR). University Corporation for Atmospheric Research. doi: 10.5065/D6DZ069T
|
[18] |
Tissot P E, Cox D T, Michaud P. 2001. Neural network forecasting of storm surges along the gulf of Mexico. In: Fourth International Symposium on Ocean Wave Measurement and Analysis. San Francisco, California, United States: American Society of Civil Engineers, 1535–1544, doi: 10.1061/40604(273)155
|
[19] |
Vilibić I, Šepić J, Mihanović H, et al. 2016. Self-organizing maps-based ocean currents forecasting system. Scientific Reports, 6(1): 22924. doi: 10.1038/srep22924
|
[20] |
Wu Lingjuan, Gao Song, Liu Aichao, et al. 2015. Operational system of monitoring, forecasting and warning on marine disaster for Shandong Province. Journal of Institute of Disaster Prevention (in Chinese), 17(2): 61–69
|
[21] |
Yang Haofan, Chen Y P P. 2019. Hybrid deep learning and empirical mode decomposition model for time series applications. Expert Systems with Applications, 120: 128–138. doi: 10.1016/j.eswa.2018.11.019
|
[22] |
Zhang Wenxiao, Gao Guodong, Mu Guangyu. 2006. Study on the model of salinity based on back-propagation artificial neural network. Ocean Technology (in Chinese), 25(4): 39–41
|
[23] |
Zhang Dan, Peng Xiangang, Pan Keda, et al. 2019. A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine. Energy Conversion and Management, 180: 338–357. doi: 10.1016/j.enconman.2018.10.089
|
1. | Yongcai Yang, Xiaojun Xie, Youchuan Li, et al. Formation and distribution of coal measure source rocks in the Eocene Pinghu Formation in the Pinghu Slope of the Xihu Depression, East China Sea Shelf Basin. Acta Oceanologica Sinica, 2023, 42(3): 254. doi:10.1007/s13131-023-2176-8 | |
2. | Shuangshuang Zhang, Kangliang Guo, Zhiquan Zhang. Segmented superimposed model of near-bore reservoir pollution skin factor for low porosity and permeability sandstone horizontal gas wells. Frontiers in Earth Science, 2023, 11 doi:10.3389/feart.2023.1335629 | |
3. | Zigui Chen, Tao Jiang, Zenggui Kuang, et al. 琼东南盆地天然气水合物与浅层气共生体系成藏特征. Earth Science-Journal of China University of Geosciences, 2022, 47(5): 1619. doi:10.3799/dqkx.2022.094 | |
4. | Min Xu, Dujie Hou, Xiong Cheng, et al. Aliphatic biomarker signatures of early Oligocene—early Miocene source rocks in the central Qiongdongnan Basin: Source analyses of organic matter. Acta Oceanologica Sinica, 2022. doi:10.1007/s13131-022-2082-5 | |
5. | Chao Li, Guojun Chen, Qianshan Zhou, et al. Multistage geomorphic evolution of the Central Canyon in the Qiongdongnan Basin, NW South China Sea. Marine Geophysical Research, 2021, 42(3) doi:10.1007/s11001-021-09448-8 | |
6. | Hangyu Li, Ming Zhang, Hon Chung Lau, et al. China's deepwater development: subsurface challenges and opportunities. Journal of Petroleum Science and Engineering, 2020, 195: 107761. doi:10.1016/j.petrol.2020.107761 | |
7. | Chao Lei, Peter D. Clift, Jianye Ren, et al. A rapid shift in the sediment routing system of Lower-Upper Oligocene strata in the Qiongdongnnan Basin (Xisha Trough), Northwest South China Sea. Marine and Petroleum Geology, 2019, 104: 249. doi:10.1016/j.marpetgeo.2019.03.012 | |
8. | Heting HUANG, Baojia HUANG, Yiwen HUANG, et al. Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in western South China Sea: A case study of Lingshui 17-2 gas field in Qiongdongnan Basin. Petroleum Exploration and Development, 2017, 44(3): 409. doi:10.1016/S1876-3804(17)30047-2 | |
9. | Chao Lei, Jianye Ren. Hyper-extended rift systems in the Xisha Trough, northwestern South China Sea: Implications for extreme crustal thinning ahead of a propagating ocean. Marine and Petroleum Geology, 2016, 77: 846. doi:10.1016/j.marpetgeo.2016.07.022 | |
10. | Hangyu Li, Ming Zhang, Hon Lau, et al. China's Deepwater Field Development: Subsurface Challenges and Opportunities. Day 3 Wed, May 06, 2020, doi:10.4043/30726-MS |