Citation: | Tingting Qin, Tong Jia, Qian Feng, Xiaoming Li. Sea surface wind speed retrieval from Sentinel-1 HH polarization data using conventional and neural network methods[J]. Acta Oceanologica Sinica, 2021, 40(1): 13-21. doi: 10.1007/s13131-020-1682-1 |
[1] |
Bentamy A, Croize-Fillon D, Perigaud C. 2008. Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations. Ocean Science, 4(4): 265–274. doi: 10.5194/os-4-265-2008
|
[2] |
Elfouhaily T. 1996. Physical modeling of electromagnetic backscatter from the ocean surface; application to retrieval of wind fields and wind stress by remote sensing of the marine atmospheric boundary layer [dissertation]. Paris: University Paris VII
|
[3] |
ESA (European Space Agency). 2016. Sentinel-1 product specification. https://sentinel.esa.int/web/sentinel/document-library/content/-/article/sentinel-1-product-specification, [2020-2-17]
|
[4] |
Hersbach H. 2010. Comparison of C-band scatterometer CMOD5. N equivalent neutral winds with ECMWF. Journal of Atmospheric and Oceanic Technology, 27(4): 721–736. doi: 10.1175/2009JTECHO698.1
|
[5] |
Hersbach H, Stoffelen A, de Haan S. 2007. An improved C‐band scatterometer ocean geophysical model function: CMOD5. Journal of Geophysical Research, 112(C3): C03006
|
[6] |
Horstmann J, Schiller H, Schulz-Stellenfleth J, et al. 2003. Global wind speed retrieval from SAR. IEEE Transactions on Geoscience and Remote Sensing, 41(10): 2277–2286. doi: 10.1109/TGRS.2003.814658
|
[7] |
Komarov A S, Buehner M. 2017. Automated detection of ice and open water from dual-polarization RADARSAT-2 images for data assimilation. IEEE Transactions on Geoscience and Remote Sensing, 55(10): 5755–5769. doi: 10.1109/TGRS.2017.2713987
|
[8] |
Liu Guihong, Yang Xiaofeng, Li Xiaofeng, et al. 2013. A systematic comparison of the effect of polarization ratio models on sea surface wind retrieval from C-band synthetic aperture radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3): 1100–1108. doi: 10.1109/JSTARS.2013.2242848
|
[9] |
Monaldo F M, Thompson D R, Pichel W G, et al. 2004. A systematic comparison of QuikSCAT and SAR ocean surface wind speeds. IEEE Transactions on Geoscience and Remote Sensing, 42(2): 283–291. doi: 10.1109/TGRS.2003.817213
|
[10] |
Moreira A. 1991. Improved multi-look techniques applied to SAR and Scan SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 29(4): 529–534. doi: 10.1109/36.135814
|
[11] |
Mouche A A, Hauser D, Daloze J F, et al. 2005. Dual-polarization measurements at C-band over the ocean: results from airborne radar observations and comparison with ENVISAT ASAR data. IEEE Transactions on Geoscience and Remote Sensing, 43(4): 753–769. doi: 10.1109/TGRS.2005.843951
|
[12] |
Olivier P, Vidal-Madjar D. 1994. Empirical estimation of the ERS-1 SAR radiometric resolution. International Journal of Remote Sensing, 15(5): 1109–1114. doi: 10.1080/01431169408954144
|
[13] |
Peixoto J P, Oort A H. 1992. Physics of Climate. New York: American Institute of Physics, 67
|
[14] |
Pierson Jr W J. 1990. Examples of, reasons for, and consequences of the poor quality of wind data from ships for the marine boundary layer: Implications for remote sensing. Journal of Geophysical Research, 95(C8): 13313–13340. doi: 10.1029/JC095iC08p13313
|
[15] |
Pond S, Pickard G L. 1983. Currents with friction; wind-driven circulation. In: Pond S, Pickard G, eds. Introductory Dynamical Oceanography. 2nd ed. Amsterdam: Elsevier, 100–162
|
[16] |
Quilfen Y, Chapron B, Elfouhaily T, et al. 1998. Observation of tropical cyclones by high-resolution scatterometry. Journal of Geophysical Research, 103(C4): 7767–7786. doi: 10.1029/97JC01911
|
[17] |
Richaume P, Badran F, Crepon M, et al. 2000. Neural network wind retrieval from ERS-1 scatterometer data. Journal of Geophysical Research, 105(C4): 8737–8751. doi: 10.1029/1999JC900225
|
[18] |
Schwerdt M, Schmidt K, Tous Ramon N, et al. 2014. Independent verification of the Sentinel-1A system calibration. In: Proceedings of 2014 Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada: IEEE
|
[19] |
Stoffelen A, Anderson D. 1997. Scatterometer data interpretation: estimation and validation of the transfer function CMOD4. Journal of Geophysical Research, 102(C3): 5767–5780. doi: 10.1029/96JC02860
|
[20] |
Thiria S, Mejia C, Badran F, et al. 1993. A neural network approach for modeling nonlinear transfer functions: application for wind retrieval from spaceborne scatterometer data. Journal of Geophysical Research, 98(C12): 22827–22841. doi: 10.1029/93JC01815
|
[21] |
Wang Lihua, Lu Peng, Ma Jiapei. 2017. Deriving sea surface wind from synthetic aperture radar based on Fourier transform and neural network. In: Proceedings of the 10th International Congress on Image and Signal Processing. Shanghai: IEEE, 1–6
|
[22] |
Yang Yonghong. 2009. Introduction to Synthetic Aperture Radar Ocean Remote Sensing (in Chinese). Beijing: China Ocean Press
|
[23] |
Zhang Biao, Mouche A, Lu Yiru, et al. 2019. A geophysical model function for wind speed retrieval from C-band HH-polarized synthetic aperture radar. IEEE Geoscience and Remote Sensing Letters, 16(10): 1521–1525. doi: 10.1109/LGRS.2019.2905578
|
[24] |
Zhang Biao, Perrie W, He Yijun. 2011. Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model. Journal of Geophysical Research, 116(C8): C08008
|
[25] |
Zhang Biao, Perrie W, Hwang P A, et al. 2010. A new polarization ratio model from C-band RADARSAT-2 fine Quad-Pol imagery. In: Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE, 1948–1951
|