Volume 39 Issue 12
Jan.  2021
Turn off MathJax
Article Contents
Yanguang Fu, Yikai Feng, Dongxu Zhou, Xinghua Zhou, Jie Li, Qiuhua Tang. Accuracy assessment of global ocean tide models in the South China Sea using satellite altimeter and tide gauge data[J]. Acta Oceanologica Sinica, 2020, 39(12): 1-10. doi: 10.1007/s13131-020-1685-y
Citation: Yanguang Fu, Yikai Feng, Dongxu Zhou, Xinghua Zhou, Jie Li, Qiuhua Tang. Accuracy assessment of global ocean tide models in the South China Sea using satellite altimeter and tide gauge data[J]. Acta Oceanologica Sinica, 2020, 39(12): 1-10. doi: 10.1007/s13131-020-1685-y

Accuracy assessment of global ocean tide models in the South China Sea using satellite altimeter and tide gauge data

doi: 10.1007/s13131-020-1685-y
Funds:  The National Key Research and Development Program of China under contract Nos 2017YFC0306003 and 2016YFB0501703; the National Natural Science Foundation of China under contract Nos 41876111, 41706115 and 41806214.
More Information
  • In this study, to meet the need for accurate tidal prediction, the accuracy of global ocean tide models was assessed in the South China Sea (0°–26°N, 99°–121°E). Seven tide models, namely, DTU10, EOT11a, FES2014, GOT4.8, HAMTIDE12, OSU12 and TPXO8, were considered. The accuracy of eight major tidal constituents (i.e., Q1, O1, P1, K1, N2, M2, S2 and K2) were assessed for the shallow water and coastal areas based on the tidal constants derived from multi-mission satellite altimetry (TOPEX and Jason series) and tide gauge observations. The root mean square values of each constituent between satellite-derived tidal constants and tide models were found in the range of 0.72–1.90 cm in the deep ocean (depth>200 m) and 1.18–5.63 cm in shallow water area (depth<200 m). Large inter-model discrepancies were noted in the Strait of Malacca and the Taiwan Strait, which could be attributable to the complicated hydrodynamic systems and the paucity of high-quality satellite altimetry data. In coastal regions, an accuracy performance was investigated using tidal results from 37 tide gauge stations. The root sum square values were in the range of 9.35–19.11 cm, with the FES2014 model exhibiting slightly superior performance.
  • loading
  • [1]
    Amante C, Eakins B W. 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. In: National Oceanic and Atmospheric Administration. NOAA Technical Memorandum NESDIS NGDC-24. Boulder, Colorado: National Geophysical Data Center, NOAA, 1–19, doi: 10.7289/V5C8276M
    [2]
    Andersen O B, Woodworth P L, Flather R A. 1995. Intercomparison of recent ocean tide models. Journal of Geophysical Research: Oceans, 100(C12): 25261–25282. doi: 10.1029/95JC02642
    [3]
    Carrere L, Lyard F, Cancet M, et al. 2015. FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. In: EGU General Assembly 2015. Vienna, Austria: EGU
    [4]
    Chen Ming, Murali K, Khoo B C, et al. 2005. Circulation modelling in the strait of Singapore. Journal of Coastal Research, 21(5): 960–972
    [5]
    Cheng Yongcun, Andersen O B. 2011. Multimission empirical ocean tide modeling for shallow waters and polar seas. Journal of Geophysical Research: Oceans, 116(C11): C11001. doi: 10.1029/2011JC007172
    [6]
    Cheng Yongcun, Xu Qing, Zhang Yuan. 2016. Tidal estimation from TOPEX/Poseidon, Jason primary, and Interleaved missions in the Bohai, Yellow, and East China seas. Journal of Coastal Research, 32(4): 966–973. doi: 10.2112/JCOASTRES-D-14-00209.1
    [7]
    Cherniawsky J Y, Foreman M G G, Crawford W R, et al. 2001. Ocean tides from TOPEX/Poseidon sea level data. Journal of Atmospheric and Oceanic Technology, 18(4): 649–664. doi: 10.1175/1520-0426(2001)018<0649:OTFTPS>2.0.CO;2
    [8]
    Daher V B, de Oliveira Vieira Paes R C, França G B, et al. 2015. Extraction of tide constituents by harmonic analysis using altimetry satellite data in the Brazilian coast. Journal of Atmospheric and Oceanic Technology, 32(3): 614–626. doi: 10.1175/JTECH-D-14-00091.1
    [9]
    Desportes E, Obligis E, Eymard L. 2007. On the wet tropospheric correction for altimetry in coastal regions. IEEE Transactions on Geoscience and Remote Sensing, 45(7): 2139–2149. doi: 10.1109/TGRS.2006.888967
    [10]
    Dorandeu J, Le Traon P Y. 1999. Effects of global mean atmospheric pressure variations on mean sea level changes from TOPEX/Poseidon. Journal of Atmospheric and Oceanic Technology, 16(9): 1279–1283. doi: 10.1175/1520-0426(1999)016<1279:EOGMAP>2.0.CO;2
    [11]
    Egbert G D, Bennett A F, Foreman M G G. 1994. TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research: Oceans, 99(C12): 24821–24852. doi: 10.1029/94JC01894
    [12]
    Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [13]
    Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788): 775–778. doi: 10.1038/35015531
    [14]
    Fang Guohong. 1986. Tide and tidal current charts for the marginal seas adjacent to China. Chinese Journal of Oceanology and Limnology, 4(1): 1–16. doi: 10.1007/BF02850393
    [15]
    Fang Guohong, Kwok Y K, Yu Kejun, et al. 1999. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Continental Shelf Research, 19(7): 845–869. doi: 10.1016/S0278-4343(99)00002-3
    [16]
    Fok H S, Iz H B, Shum C K, et al. 2010. Evaluation of ocean tide models used for Jason-2 altimetry corrections. Marine Geodesy, 33(S1): 285–303. doi: 10.1080/01490419.2010.491027
    [17]
    Fok H S. 2012. Ocean tides modeling using satellite altimetry [dissertation]. Columbus, OH, USA: The Ohio State University
    [18]
    Fu Yanguang, Zhou Dongxu, Zhou Xinghua, et al. 2020. Evaluation of satellite-derived tidal constituents in the South China Sea by adopting the most suitable geophysical correction models. Journal of Oceanography, 76: 183–196. doi: 10.1007/s10872-019-00537-2
    [19]
    Fu L L, Cazenave A. 2001. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. San Diego: Academic Press, 463
    [20]
    Godin G. 1986. The use of nodal corrections in the calculation of harmonic constants. International Hydrographic Review, 63(2): 143–162
    [21]
    Green J A M, David T W. 2013. Non-assimilated tidal modeling of the South China Sea. Deep -Sea Research Part I: Oceanographic Research Papers, 78: 42–48. doi: 10.1016/j.dsr.2013.04.006
    [22]
    Groves G W, Reynolds R W. 1975. An orthogonalized convolution method of tide prediction. Journal of Geophysical Research, 80(30): 4131–4138. doi: 10.1029/JC080i030p04131
    [23]
    Iliffe J C, Ziebart M K, Turner J F, et al. 2013. Accuracy of vertical datum surfaces in coastal and offshore zones. Survey Review, 45(331): 254–262. doi: 10.1179/1752270613Y.0000000040
    [24]
    Kalnay E, Kanamitsu M, Kistle R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [25]
    Keysers J H, Quadros N D, Collier P A. 2015. Vertical datum transformations across the Australian littoral zone. Journal of Coastal Research, 31(1): 119–128. doi: 10.2112/JCOASTRES-D-12-00228.1
    [26]
    Lyard F, Lefevre F, Letellier T, et al. 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56(5–6): 394–415. doi: 10.1007/s10236-006-0086-x
    [27]
    Mayer-Gürr T, Savcenko R, Bosch W, et al. 2012. Ocean tides from satellite altimetry and GRACE. Journal of Geodynamics, 59–60: 28–38. doi: 10.1016/j.jog.2011.10.009
    [28]
    Munk W H, Cartwright D E. 1966. Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 259(1105): 533–583. doi: 10.1098/rsta.1966.0024
    [29]
    Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8): 929–937. doi: 10.1016/S0098-3004(02)00013-4
    [30]
    Ray R D. 1999. A global ocean tide model from TOPEX/POSEIDON altimetry, GOT99.2. In: NASA/TM—1999-209478. Greenbelt, MD: Goddard Space Flight Center, 58
    [31]
    Rizal S, Damm P, Wahid M A, et al. 2012. General circulation in the Malacca Strait and Andaman Sea: a numerical model study. American Journal of Environmental Sciences, 8(5): 479–488. doi: 10.3844/ajessp.2012.479.488
    [32]
    Savcenko R, Bosch W. 2012. EOT11a-Empirical ocean tide model from multi-mission satellite altimetry. Munchen: Deutsches Geodätisches Forschungsinstitut (DGFI), 89, 49, https://epic.awi.de/id/eprint/36001/1/DGFI_Report_89.pdf [2017-11-8]
    [33]
    Schrama E J O, Ray R D. 1994. A preliminary tidal analysis of TOPEX/POSEIDON altimetry. Journal of Geophysical Research: Oceans, 99(C12): 24799–24808. doi: 10.1029/94JC01432
    [34]
    Seifi F, Deng Xiaoli, Andersen O B. 2019. Assessment of the accuracy of recent empirical and assimilated tidal models for the Great Barrier Reef, Australia, using satellite and coastal data. Remote Sensing, 11(10): 1211. doi: 10.3390/rs11101211
    [35]
    Shum C K, Woodworth P L, Andersen O B, et al. 1997. Accuracy assessment of recent ocean tide models. Journal of Geophysical Research: Oceans, 102(C11): 25173–25194. doi: 10.1029/97JC00445
    [36]
    Stammer D, Ray R D, Ander O B, et al. 2014. Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52(3): 243–282. doi: 10.1002/2014RG000450
    [37]
    Taguchi E, Stammer D, Zahel W. 2010. Inferring deep ocean tidal energy dissipation from the global high-resolution data-assimilative HAMTIDE model. Journal of Geophysical Research: Oceans, 119(7): 4573–4592. doi: 10.1002/2013JC009766
    [38]
    Visser P N A M, Sneeuw N, Reubelt T, et al. 2010. Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophysical Journal International, 181(2): 789–805. doi: 10.1111/j.1365-246X.2010.04557.x
    [39]
    Ye A L, Robinson I S. 1983. Tidal dynamics in the South China Sea. Geophysical Journal International, 72(3): 691–707. doi: 10.1111/j.1365-246X.1983.tb02827.x
    [40]
    Zahel W. 1995. Assimilating ocean tide determined data into global tidal models. Journal of Marine Systems, 6(1–2): 3–13. doi: 10.1016/0924-7963(94)00014-3
    [41]
    Zu Tingting, Gan Jianping, Erofeeva S Y. 2008. Numerical study of the tide and tidal dynamics in the South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 55(2): 137–154. doi: 10.1016/j.dsr.2007.10.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (758) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return