Volume 39 Issue 12
Jan.  2021
Turn off MathJax
Article Contents
Liuyang Li, Chao Wu, Jun Sun, Shuqun Song, Changling Ding, Danyue Huang, Laxman Pujari. Nitrogen fixation driven by mesoscale eddies and the Kuroshio Current in the northern South China Sea and the East China Sea[J]. Acta Oceanologica Sinica, 2020, 39(12): 30-41. doi: 10.1007/s13131-020-1691-0
Citation: Liuyang Li, Chao Wu, Jun Sun, Shuqun Song, Changling Ding, Danyue Huang, Laxman Pujari. Nitrogen fixation driven by mesoscale eddies and the Kuroshio Current in the northern South China Sea and the East China Sea[J]. Acta Oceanologica Sinica, 2020, 39(12): 30-41. doi: 10.1007/s13131-020-1691-0

Nitrogen fixation driven by mesoscale eddies and the Kuroshio Current in the northern South China Sea and the East China Sea

doi: 10.1007/s13131-020-1691-0
Funds:  The National Natural Science Foundation of China under contract Nos 41876134 and 41406155; the University Innovation Team Training Program for Tianjin under contract No. TD12-5003; the Tianjin 131 Innovation Team Program under contract No. 20180314; the Changjiang Scholar Program of Chinese Ministry of Education to Jun Sun under contract No. T2014253; the Tianjin Municipal Education Commission Research Program under contract No. 2017KJ012; the Open Fund of Tianjin Key Laboratory of Marine Resources and Chemistry under contract Nos 201506 and 201801.
More Information
  • Corresponding author: E-mail: phytoplankton@163.com
  • Received Date: 2019-08-17
  • Accepted Date: 2020-02-17
  • Available Online: 2021-04-21
  • Publish Date: 2020-12-25
  • N2 fixation rates (NFR, in terms of N) in the northern South China Sea (nSCS) and the East China Sea (ECS) were measured using the acetylene reduction assay in summer and winter, 2009. NFR of the surface water ranged from 1.14 nmol/(L·d) to 10.40 nmol/(L·d) (average at (4.89±3.46) nmol/(L·d), n=11) in summer and 0.74 nmol/(L·d) to 29.45 nmol/(L·d) (average at (7.81±8.50) nmol/(L·d), n=15) in winter. Significant spatio-temporal heterogeneity emerged in our study: the anticyclonic eddies (AE) (P<0.01) and the Kuroshio Current (KC) (P<0.05) performed significantly higher NFR than that in the cyclonic eddies or no-eddy area (CEONE), indicating NFR was profoundly influenced by the physical process of the Kuroshio and mesoscale eddies. The depth-integrated N2 fixation rates (INF, in terms of N) ranged from 52.4 μmol/(m2·d) to 905.2 μmol/(m2·d) (average at (428.9±305.5) μmol/(m2·d), n=15) in the winter. The contribution of surface NFR to primary production (PP) ranged from 1.7% to 18.5% in the summer, and the mean contribution of INF to new primary production (NPP) in the nSCS and ECS were estimated to be 11.0% and 36.7% in the winter. The contribution of INF to NPP (3.0%–93.9%) also decreased from oligotrophic sea toward the eutrophic waters affected by runoffs or the CEONE. Furthermore, we observed higher contributions compared to previous studies, revealing the vital roles of nitrogen fixation in sustaining the carbon pump of the nSCS and ECS.
  • loading
  • [1]
    Agawin N S R, Benavides M, Busquets A, et al. 2014. Dominance of unicellular cyanobacteria in the diazotrophic community in the Atlantic Ocean. Limnology and Oceanography, 59(2): 623–637. doi: 10.4319/lo.2014.59.2.0623
    [2]
    Agawin N S R, Tovar-Sánchez A, de Zarruk K K, et al. 2013. Variability in the abundance of Trichodesmium and nitrogen fixation activities in the subtropical NE Atlantic. Journal of Plankton Research, 35(5): 1126–1140. doi: 10.1093/plankt/fbt059
    [3]
    Armstrong F A J, Stearns C R, Strickland J D H. 1967. The measurement of upwelling and subsequent biological process by means of the Technicon Autoanalyzer® and associated equipment. Deep Sea Research and Oceanographic Abstracts, 14(3): 381–389. doi: 10.1016/0011-7471(67)90082-4
    [4]
    Behrenfeld M J, Falkowski P G. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography, 42(1): 1–20. doi: 10.4319/lo.1997.42.1.0001
    [5]
    Benavides M, Voss M. 2015. Five decades of N2 fixation research in the North Atlantic Ocean. Frontiers in Marine Science, 2: 40
    [6]
    Bernhardt H, Wilhelms A. 1967. The continuous determination of low level iron, soluble phosphate and total phosphate with the AutoAnalyzer. Technicon Symposium, 1: 385–389
    [7]
    Böttjer D, Dore J E, Karl D M, et al. 2017. Temporal variability of nitrogen fixation and particulate nitrogen export at Station ALOHA. Limnology and Oceanography, 62(1): 200–216. doi: 10.1002/lno.10386
    [8]
    Bronk D A, Ward B B. 1999. Gross and net nitrogen uptake and DON release in the euphotic zone of Monterey Bay, California. Limnology and Oceanography, 44(3): 573–585. doi: 10.4319/lo.1999.44.3.0573
    [9]
    Canfield D E, Glazer A N, Falkowski P G. 2010. The evolution and future of Earth’s nitrogen cycle. Science, 330(6001): 192–196. doi: 10.1126/science.1186120
    [10]
    Capone D G. 1993. Determination of nitrogenase activity in aquatic samples using the acetylene reduction procedure. In: Kemp P F, Cole J J, Sherr B F, et al., eds. Handbook of Methods in Aquatic Microbial Ecology. Boca Raton: Lewis Publishers, 621–631
    [11]
    Chen T Y, Lee Chen Y L, Sheu D S, et al. 2019a. Community and abundance of heterotrophic diazotrophs in the northern South China Sea: revealing the potential importance of a new alphaproteobacterium in N2 fixation. Deep Sea Research Part I: Oceanographic Research Papers, 143: 104–114. doi: 10.1016/j.dsr.2018.11.006
    [12]
    Chen Mingming, Lu Yangyang, Jiao Nianzhi, et al. 2019b. Biogeographic drivers of diazotrophs in the western Pacific Ocean. Limnology and Oceanography, 64(3): 1403–1421. doi: 10.1002/lno.11123
    [13]
    Chen Bingzhang, Wang Lei, Song Shuqun, et al. 2011. Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea. Continental Shelf Research, 31(14): 1527–1540. doi: 10.1016/j.csr.2011.06.018
    [14]
    Cheung S, Suzuki K, Saito H, et al. 2017. Highly heterogeneous diazotroph communities in the Kuroshio Current and the Tokara Strait, Japan. PLoS One, 12(10): e0186875. doi: 10.1371/journal.pone.0186875
    [15]
    Church M, Böttjer D. 2013. Diversity, ecology, and biogeochemical influence of N2-fixing microorganisms in the sea. In: Levin S A, ed. Encyclopedia of Biodiversity. Amsterdam: Academic Press, 608–625
    [16]
    Dong Junde, Zhang Yanying, Wang Youshao, et al. 2008. Spatial and seasonal variations of Cyanobacteria and their nitrogen fixation rates in Sanya Bay, South China Sea. Scientia Marina, 72(2): 239–251
    [17]
    Du Chuanjun, Liu Zhiyu, Dai Minhan, et al. 2013. Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: insights from an isopycnal mixing model. Biogeosciences, 10(10): 6419–6432. doi: 10.5194/bg-10-6419-2013
    [18]
    Duce R A, Liss P S, Merrill J T, et al. 1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5(3): 193–259. doi: 10.1029/91GB01778
    [19]
    Eppley R W, Peterson B J. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282(5740): 677–680. doi: 10.1038/282677a0
    [20]
    Falcón L I, Cipriano F, Chistoserdov A Y, et al. 2002. Diversity of diazotrophic unicellular cyanobacteria in the tropical North Atlantic Ocean. Applied and Environmental Microbiology, 68(11): 5760–5764. doi: 10.1128/AEM.68.11.5760-5764.2002
    [21]
    Fong A A, Karl D M, Lukas R, et al. 2008. Nitrogen fixation in an anticyclonic eddy in the oligotrophic North Pacific Ocean. The ISME Journal, 2(6): 663–676. doi: 10.1038/ismej.2008.22
    [22]
    Gaye B, Wiesner M G, Lahajnar N. 2009. Nitrogen sources in the South China Sea, as discerned from stable nitrogen isotopic ratios in rivers, sinking particles, and sediments. Marine Chemistry, 114(3–4): 72–85
    [23]
    Glibert P M, Heil C A, Hollander D, et al. 2004. Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial bloom in Florida Bay. Marine Ecology Progress Series, 280: 73–83. doi: 10.3354/meps280073
    [24]
    Großkopf T, Mohr W, Baustian T, et al. 2012. Doubling of marine dinitrogen-fixation rates based on direct measurements. Nature, 488(7411): 361–364. doi: 10.1038/nature11338
    [25]
    Jiang Zhibing, Zeng Jiangning, Chen Jianfang, et al. 2015. Diazotrophic cyanobacterium Trichodesmium spp. in China marginal seas: comparison with other global seas. Acta Ecologica Sinica, 35(2): 37–45. doi: 10.1016/j.chnaes.2015.01.003
    [26]
    Jyothibabu R, Karnan C, Jagadeesan L, et al. 2017. Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal. Marine Pollution Bulletin, 121(1–2): 201–215
    [27]
    Jyothibabu R, Vinayachandran P N, Madhu N V, et al. 2015. Phytoplankton size structure in the southern Bay of Bengal modified by the Summer Monsoon Current and associated eddies: Implications on the vertical biogenic flux. Journal of Marine Systems, 143: 98–119. doi: 10.1016/j.jmarsys.2014.10.018
    [28]
    Kong Liangliang, Jing Hongmei, Kataoka T, et al. 2011. Phylogenetic diversity and spatio-temporal distribution of nitrogenase genes (nifH) in the northern South China Sea. Aquatic Microbial Ecology, 65(1): 15–27. doi: 10.3354/ame01531
    [29]
    Lee Chen Y L. 2005. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 52(2): 319–340. doi: 10.1016/j.dsr.2004.11.001
    [30]
    Lee Chen Y L, Chen H Y. 2003. Nitrate-based new production and its relationship to primary production and chemical hydrography in spring and fall in the East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6–7): 1249–1264
    [31]
    Lee Chen Y L, Chen H Y, Karl D M, et al. 2004. Nitrogen modulates phytoplankton growth in spring in the South China Sea. Continental Shelf Research, 24(4–5): 527–541
    [32]
    Lee Chen Y L, Chen H Y, Lin Y H, et al. 2014. The relative contributions of unicellular and filamentous diazotrophs to N2 fixation in the South China Sea and the upstream Kuroshio. Deep Sea Research Part I: Oceanographic Research Papers, 85: 56–71. doi: 10.1016/j.dsr.2013.11.006
    [33]
    Lee Chen Y L, Chen H Y, Tuo S H, et al. 2008. Seasonal dynamics of new production from Trichodesmium N2 fixation and nitrate uptake in the upstream Kuroshio and South China Sea basin. Limnology and Oceanography, 53(5): 1705–1721. doi: 10.4319/lo.2008.53.5.1705
    [34]
    Lie H J, Cho C H. 2002. Recent advances in understanding the circulation and hydrography of the East China Sea. Fisheries Oceanography, 11(6): 318–328. doi: 10.1046/j.1365-2419.2002.00215.x
    [35]
    Liu K K, Chao S Y, Shaw P T, et al. 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Research Part I: Oceanographic Research Papers, 49(8): 1387–1412. doi: 10.1016/S0967-0637(02)00035-3
    [36]
    Liu Xin, Furuya K, Shiozaki T, et al. 2013. Variability in nitrogen sources for new production in the vicinity of the shelf edge of the East China Sea in summer. Continental Shelf Research, 61–62: 23–30
    [37]
    Luo Y W, Doney S C, Anderson L A, et al. 2012. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth System Science Data, 4(1): 47–73. doi: 10.5194/essd-4-47-2012
    [38]
    Martínez-Pérez C, Mohr W, Schwedt A, et al. 2018. Metabolic versatility of a novel N2-fixing Alphaproteobacterium isolated from a marine oxygen minimum zone. Environmental Microbiology, 20(2): 755–768. doi: 10.1111/1462-2920.14008
    [39]
    Mohr W, Großkopf T, Wallace D W R, et al. 2010. Methodological underestimation of oceanic nitrogen fixation rates. PLoS One, 5(9): e12583. doi: 10.1371/journal.pone.0012583
    [40]
    Moisander P H, Beinart R A, Hewson I, et al. 2010. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science, 327(5972): 1512–1514. doi: 10.1126/science.1185468
    [41]
    Montoya J P, Holl C M, Zehr J P, et al. 2004. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature, 430(7003): 1027–1031. doi: 10.1038/nature02824
    [42]
    Mulholland M R, Bernhardt P W, Heil C A, et al. 2006. Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf of Mexico. Limnology and Oceanography, 51(4): 1762–1776. doi: 10.4319/lo.2006.51.4.1762
    [43]
    Mulholland M R, Bronk D A, Capone D G. 2004. Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. Aquatic Microbial Ecology, 37(1): 85–94
    [44]
    Needoba J A, Foster R A, Sakamoto C, et al. 2007. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnology and Oceanography, 52(4): 1317–1327. doi: 10.4319/lo.2007.52.4.1317
    [45]
    Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Oxford, UK: Pergamon Press, 173
    [46]
    Shiozaki T, Furuya K, Kodama T, et al. 2010. New estimation of N2 fixation in the western and central Pacific Ocean and its marginal seas. Global Biogeochemical Cycles, 24(1): GB1015
    [47]
    Shiozaki T, Kondo Y, Yuasa D, et al. 2018. Distribution of major diazotrophs in the surface water of the Kuroshio from northeastern Taiwan to south of mainland Japan. Journal of Plankton Research, 40(4): 407–419. doi: 10.1093/plankt/fby027
    [48]
    Shiozaki T, Lee Chen Y L, Lin Y H, et al. 2014. Seasonal variations of unicellular diazotroph groups A and B, and Trichodesmium in the northern South China Sea and neighboring upstream Kuroshio Current. Continental Shelf Research, 80: 20–31. doi: 10.1016/j.csr.2014.02.015
    [49]
    Shiozaki T, Takeda S, Itoh S, et al. 2015a. Why is Trichodesmium abundant in the Kuroshio?. Biogeosciences, 12(23): 6931–6943. doi: 10.5194/bg-12-6931-2015
    [50]
    Shiozaki T, Takeda S, Itoh S, et al. 2015b. Trichodesmium and nitrogen fixation in the Kuroshio. Biogeosciences Discussions, 12(14): 11061–11087. doi: 10.5194/bgd-12-11061-2015
    [51]
    Sohm J A, Webb E A, Capone D G. 2011. Emerging patterns of marine nitrogen fixation. Nature Reviews Microbiology, 9(7): 499–508. doi: 10.1038/nrmicro2594
    [52]
    Stal L J. 1988. Nitrogen fixation in cyanobacterial mats. Methods in Enzymology, 167: 474–484. doi: 10.1016/0076-6879(88)67052-2
    [53]
    Tang T Y, Tai J H, Yang Y J. 2000. The flow pattern north of Taiwan and the migration of the Kuroshio. Continental Shelf Research, 20(4–5): 349–371
    [54]
    van Raalte C D, Valiela I, Carpenter E J, et al. 1974. Inhibition of nitrogen fixation in salt marshes measured by acetylene reduction. Estuarine and Coastal Marine Science, 2(3): 301–305. doi: 10.1016/0302-3524(74)90020-6
    [55]
    Voss M, Bombar D, Loick N, et al. 2006. Riverine influence on nitrogen fixation in the upwelling region off Vietnam, South China Sea. Geophysical Research Letters, 33(7): L07604
    [56]
    Wang Dongxiao, Xu Hongzhou, Lin Jing, et al. 2008. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. Journal of Oceanography, 64(6): 925–935. doi: 10.1007/s10872-008-0076-3
    [57]
    White A E, Foster R A, Benitez-Nelson C R, et al. 2013. Nitrogen fixation in the Gulf of California and the Eastern Tropical North Pacific. Progress in Oceanography, 109: 1–17. doi: 10.1016/j.pocean.2012.09.002
    [58]
    Wilson S T, Böttjer D, Church M J, et al. 2012. Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic North Pacific Ocean. Applied and Environmental Microbiology, 78(18): 6516–6523. doi: 10.1128/AEM.01146-12
    [59]
    Wong G T F, Ku T L, Mulholland M, et al. 2007. The SouthEast Asian time-series study (SEATS) and the biogeochemistry of the South China Sea—an overview. Deep Sea Research Part II: Topical Studies in Oceanography, 54(14–15): 1434–1447
    [60]
    Wright L D, Nittrouer C A. 1995. Dispersal of river sediments in coastal seas: six contrasting cases. Estuaries, 18(3): 494–508. doi: 10.2307/1352367
    [61]
    Wu Jingfeng, Chung Shiwei, Wen L S, et al. 2003. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea. Global Biogeochemical Cycles, 17(1): 8-1–8-10. doi: 10.1029/2002GB001924
    [62]
    Wu Chao, Fu Feixue, Sun Jun, et al. 2018. Nitrogen Fixation by Trichodesmium and unicellular diazotrophs in the northern South China Sea and the Kuroshio in summer. Scientific Reports, 8(1): 2415. doi: 10.1038/s41598-018-20743-0
    [63]
    Xue Huijie, Chai Fei, Pettigrew N, et al. 2004. Kuroshio intrusion and the circulation in the South China Sea. Journal of Geophysical Research: Oceans, 109(C2): C02017
    [64]
    Zhang Run, Chen Min, Cao Jianping, et al. 2012. Nitrogen fixation in the East China Sea and southern Yellow Sea during summer 2006. Marine Ecology Progress, 447: 77–86. doi: 10.3354/meps09509
    [65]
    Zhang Run, Chen Min, Yang Qing, et al. 2015. Physical-biological coupling of N2 fixation in the northwestern South China Sea coastal upwelling during summer. Limnology and Oceanography, 60(4): 1411–1425. doi: 10.1002/lno.10111
    [66]
    Zhang Yao, Zhao Zihao, Sun Jun, et al. 2011. Diversity and distribution of diazotrophic communities in the South China Sea deep basin with mesoscale cyclonic eddy perturbations. FEMS Microbiology Ecology, 78(3): 417–427. doi: 10.1111/j.1574-6941.2011.01174.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (424) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return