Volume 40 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Donglin Guo, Rui Li, Peng Zhao. The long-term trend of Bohai Sea ice in different emission scenarios[J]. Acta Oceanologica Sinica, 2021, 40(7): 100-118. doi: 10.1007/s13131-021-1703-8
Citation: Donglin Guo, Rui Li, Peng Zhao. The long-term trend of Bohai Sea ice in different emission scenarios[J]. Acta Oceanologica Sinica, 2021, 40(7): 100-118. doi: 10.1007/s13131-021-1703-8

The long-term trend of Bohai Sea ice in different emission scenarios

doi: 10.1007/s13131-021-1703-8
Funds:  The National Key R&D Program of China under contract No. 2019YFC1408403; the Outstanding Young Talents Funding Project of the Cultivation Project for High-level-innovation Talents in Science and Technology, Ministry of Natural Resources, under contract No. 12110600000018003923.
More Information
  • Corresponding author: Email: zhaopeng@ncs.mnr.gov.cn
  • Received Date: 2020-07-21
  • Accepted Date: 2020-10-22
  • Available Online: 2021-06-08
  • Publish Date: 2021-07-25
  • Based on a coupled ocean-sea ice model, this study investigates how changes in the mean state of the atmosphere in different CO2 emission scenarios (RCP 8.5, 6.0, 4.5 and 2.6) may affect the sea ice in the Bohai Sea, China, especially in the Liaodong Bay, the largest bay in the Bohai Sea. In the RCP 8.5 scenario, an abrupt change of the atmospheric state happens around 2070. Due to the abrupt change, wintertime sea ice of the Liaodong Bay can be divided into 3 periods: a mild decreasing period (2021–2060), in which the sea ice severity weakens at a near-constant rate; a rapid decreasing period (2061–2080), in which the sea ice severity drops dramatically; and a stabilized period (2081–2100). During 2021–2060, the dates of first ice are approximately unchanged, suggesting that the onset of sea ice is probably determined by a cold-air event and is not sensitive to the mean state of the atmosphere. The mean and maximum sea ice thickness in the Liaodong Bay is relatively stable before 2060, and then drops rapidly in the following decade. Different from the RCP 8.5 scenario, atmospheric state changes smoothly in the RCP 6.0, 4.5 and 2.6 scenarios. In the RCP 6.0 scenario, the sea ice severity in the Bohai Sea weakens with time to the end of the twenty-first century. In the RCP 4.5 scenario, the sea ice severity weakens with time until reaching a stable state around the 2070s. In the RCP 2.6 scenario, the sea ice severity weakens until the 2040s, stabilizes from then, and starts intensifying after the 2080s. The sea ice condition in the other bays of the Bohai Sea is also discussed under the four CO2 emissions scenarios. Among atmospheric factors, air temperature is the leading one for the decline of the sea ice extent. Specific humidity also plays an important role in the four scenarios. The surface downward shortwave/longwave radiation and meridional wind only matter in certain scenarios, while effects from the zonal wind and precipitation are negligible.
  • loading
  • [1]
    Amante C, Eakins B W. 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. Bouder, Colorado, USA: National Centers for Environmental Information, NOAA, https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:316
    [2]
    Arora V K, Scinocca J F, Boer G J, et al. 2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophysical Research Letters, 38(5): L05805. doi: 10.1029/2010GL046270
    [3]
    Bian Changwei, Jiang Wensheng, Pohlmann T, et al. 2016. Hydrography-physical description of the Bohai Sea. Journal of Coastal Research, 74(10074): 1–12. doi: 10.2112/SI74-001.1
    [4]
    Chen Changsheng, Liu Hedong, Beardsley R C. 2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20(1): 159–186. doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
    [5]
    Collins W J, Bellouin N, Doutriaux-Boucher M, et al. 2011. Development and evaluation of an Earth-System model–HadGEM2. Geoscientific Model Development, 4(4): 1051–1075. doi: 10.5194/gmd-4-1051-2011
    [6]
    Dai Aiguo, Qian Taotao, Trenberth K E, et al. 2009. Changes in continental freshwater discharge from 1948 to 2004. Journal of Climate, 22(10): 2773–2792. doi: 10.1175/2008JCLI2592.1
    [7]
    Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [8]
    Fichefet T, Maqueda M A M. 1997. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. Journal of Geophysical Research: Oceans, 102(C6): 12609–12646. doi: 10.1029/97JC00480
    [9]
    Flather R A. 1994. A storm surge prediction model for the northern bay of Bengal with application to the cyclone disaster in April 1991. Journal of Physical Oceanography, 24(1): 172–190. doi: 10.1175/1520-0485(1994)024<0172:ASSPMF>2.0.CO;2
    [10]
    Goosse H, Fichefet T. 1999. Importance of ice-ocean interactions for the global ocean circulation: a model study. Journal of Geophysical Research: Oceans, 104(C10): 23337–23355. doi: 10.1029/1999JC900215
    [11]
    Ji Qiyan, Zhu Xueming, Wang Hui, et al. 2015. Assimilating operational SST and sea ice analysis data into an operational circulation model for the coastal seas of China. Acta Oceanologica Sinica, 34(7): 54–64. doi: 10.1007/s13131-015-0691-y
    [12]
    Karvonen J, Shi Lijian, Cheng Bin, et al. 2017. Bohai sea ice parameter estimation based on thermodynamic ice model and earth observation data. Remote Sensing, 9(3): 234. doi: 10.3390/rs9030234
    [13]
    Large W G, Yeager S G. 2004. Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: The Data Sets and Flux Climatologies. NCAR/TN-460+STR. Boulder, Colorado: National Center for Atmospheric Research, doi: 10.5065/D6KK98Q6, https://opensky.ucar.edu/islandora/object/technotes:434
    [14]
    Madec G, Imbard M. 1996. A global ocean mesh to overcome the North Pole singularity. Climate Dynamics, 12(6): 381–388. doi: 10.1007/BF00211684
    [15]
    Madec G, Bourdallé-Badie R, Bouttier P A, et al. 2008. NEMO ocean engine. Zenodo: Notes du Pôle de modélisation de l'Institut Pierre-Simon Laplace (IPSL), https://doi.org/10.5281/zenodo.3248739
    [16]
    Ning Li, Xie Feng, Gu Wei, et al. 2009. Using remote sensing to estimate sea ice thickness in the Bohai Sea, China based on ice type. International Journal of Remote Sensing, 30(17): 4539–4552. doi: 10.1080/01431160802592542
    [17]
    Ouyang Lunxi, Hui Fengming, Zhu Lixian, et al. 2019. The spatiotemporal patterns of sea ice in the Bohai Sea during the winter seasons of 2000–2016. International Journal of Digital Earth, 12(8): 893–909. doi: 10.1080/17538947.2017.1365957
    [18]
    Rodgers K B, Lin J, Frölicher T L. 2015. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences, 12(11): 3301–3320. doi: 10.5194/bg-12-3301-2015
    [19]
    Rotstayn L D, Collier M A, Dix M R, et al. 2010. Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. International Journal of Climatology, 30(7): 1067–1088. doi: 10.1002/joc.1952
    [20]
    Saha S, Moorthi S, Wu Xingren, et al. 2014. The NCEP climate forecast system version 2. Journal of Climate, 27(6): 2185–2208. doi: 10.1175/JCLI-D-12-00823.1
    [21]
    Shi Wei, Wang Menghua. 2012a. Sea ice properties in the Bohai Sea measured by MODIS-Aqua: 1. Satellite algorithm development. Journal of Marine Systems, 95: 32–40. doi: 10.1016/j.jmarsys.2012.01.012
    [22]
    Shi Wei, Wang Menghua. 2012b. Sea ice properties in the Bohai Sea measured by MODIS-Aqua: 2. Study of sea ice seasonal and interannual variability. Journal of Marine Systems, 95: 41–49. doi: 10.1016/j.jmarsys.2012.01.010
    [23]
    Su Hua, Ji Bowen, Wang Yunpeng. 2019. Sea ice extent detection in the Bohai Sea using sentinel-3 OLCI data. Remote Sensing, 11(20): 2436. doi: 10.3390/rs11202436
    [24]
    Su Hua, Wang Yunpeng. 2012. Using MODIS data to estimate sea ice thickness in the Bohai Sea (China) in the 2009–2010 winter. Journal of Geophysical Research: Oceans, 117(C10): C10018. doi: 10.1029/2012JC008251
    [25]
    Su Hua, Wang Yunpeng, Yang Jingxue. 2012. Monitoring the spatiotemporal evolution of sea ice in the Bohai Sea in the 2009-2010 winter combining MODIS and meteorological data. Estuaries and Coasts, 35(1): 281–291. doi: 10.1007/s12237-011-9425-3
    [26]
    Umlauf L, Burchard H. 2003. A generic length-scale equation for geophysical turbulence models. Journal of Marine Research, 61(2): 235–265. doi: 10.1357/002224003322005087
    [27]
    Umlauf L, Burchard H. 2005. Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Continental Shelf Research, 25(7–8): 795–827. doi: 10.1016/j.csr.2004.08.004
    [28]
    van Vuuren D P, Edmonds J, Kainuma M, et al. 2011. The representative concentration pathways: an overview. Climatic Change, 109: 5. doi: 10.1007/s10584-011-0148-z
    [29]
    Yan Yu, Gu Wei, Xu Yingjun, et al. 2019. The in situ observation of modelled sea ice drift characteristics in the Bohai Sea. Acta Oceanologica Sinica, 38(3): 17–25. doi: 10.1007/s13131-019-1395-5
    [30]
    Yan Yu, Shao Dongdong, Gu Wei, et al. 2017. Multidecadal anomalies of Bohai Sea ice cover and potential climate driving factors during 1988–2015. Environmental Research Letters, 12(9): 094014. doi: 10.1088/1748-9326/aa8116
    [31]
    Yan Yu, Uotila P, Huang Kaiyue, et al. 2020. Variability of sea ice area in the Bohai Sea from 1958 to 2015. Science of the Total Environment, 709: 136164. doi: 10.1016/j.scitotenv.2019.136164
    [32]
    Yuan Shuai, Gu Wei, Xu Yingjun, et al. 2012. The estimate of sea ice resources quantity in the Bohai Sea based on NOAA/AVHRR data. Acta Oceanologica Sinica, 31(1): 33–40. doi: 10.1007/s13131-012-0173-4
    [33]
    Yuan Shuai, Liu Chengyu, Liu Xueqin. 2018. Practical model of sea ice thickness of Bohai Sea based on MODIS data. Chinese Geographical Science, 28(5): 863–872. doi: 10.1007/s11769-018-0986-y
    [34]
    Zhang Na, Wang Jin, Wu Yongsheng, et al. 2019. A modelling study of ice effect on tidal damping in the Bohai Sea. Ocean Engineering, 173: 748–760. doi: 10.1016/j.oceaneng.2019.01.049
    [35]
    Zhang Na, Wu Yongsheng, Zhang Qinghe. 2015. Detection of sea ice in sediment laden water using MODIS in the Bohai Sea: a CART decision tree method. International Journal of Remote Sensing, 36(6): 1661–1674. doi: 10.1080/01431161.2015.1015658
    [36]
    Zu Ziqing, Ling Tiejun, Zhang Yunfei, et al. 2016. Future projection of the sea ice in the Bohai Sea and the North Yellow Sea. Marine Forecasts (in Chinese), 33(5): 1–8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(5)

    Article Metrics

    Article views (649) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return