Volume 40 Issue 4
Jun.  2021
Turn off MathJax
Article Contents
Yiming Luo, Jian Lin, Fan Zhang, Meng Wei. Spreading rate dependence of morphological characteristics in global oceanic transform faults[J]. Acta Oceanologica Sinica, 2021, 40(4): 39-64. doi: 10.1007/s13131-021-1722-5
Citation: Yiming Luo, Jian Lin, Fan Zhang, Meng Wei. Spreading rate dependence of morphological characteristics in global oceanic transform faults[J]. Acta Oceanologica Sinica, 2021, 40(4): 39-64. doi: 10.1007/s13131-021-1722-5

Spreading rate dependence of morphological characteristics in global oceanic transform faults

doi: 10.1007/s13131-021-1722-5
Funds:  The foundation of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0205; the National Natural Science Foundation of China under contract Nos 41976064, 41890813, 41976066, 91958211, and 41706056; the scholarship of China Scholarship Council; the foundations of the Chinese Academy of Sciences under contract Nos Y4SL021001, QYZDY-SSW-DQC005, 133244KYSB20180029, and 131551KYSB20200021; the National Key Research and Development Program of China under contract Nos 2018YFC0309800 and 2018YFC0310105; the Foundation of the China Ocean Mineral Resources Research and Development Association under contract No. DY135-S2-1-04; the Guangdong Basic and Applied Basic Research Foundation under contract No. 2021A1515012227.
More Information
  • Corresponding author: E-mail: zhangfan@scsio.ac.cn
  • Received Date: 2020-02-28
  • Accepted Date: 2020-06-29
  • Available Online: 2021-05-06
  • Publish Date: 2021-06-03
  • We quantified the systematic variations in global transform fault morphology, revealing a first-order dependence on the spreading rate. (1) The average age offset of both the full transform and transform sub-segments decrease with increasing spreading rate. (2) The average depth of both the transform valley and adjacent ridges are smaller in the fast compared to the slow systems, reflecting possibly density anomalies associated with warmer mantle at the fast systems and rifting at the slow ridges. However, the average depth difference between the transform valley and adjacent ridges is relatively constant from the fast to slow systems. (3) The nodal basin at a ridge-transform intersection is deeper and dominant at the ultraslow and slow systems, possibly reflecting a lower magma supply and stronger viscous resistance to mantle upwelling near a colder transform wall. In contrast, the nodal high, is most prominent in the fast, intermediate, and hotspot-influenced systems, where robust axial volcanic ridges extend toward the ridge-transform intersection. (4) Statistically, the average transform valley is wider at a transform system of larger age offset, reflecting thicker deforming plates flanking the transform fault. (5) The maximum magnitude of the transform earthquakes increases with age offset owing to an increase in the seismogenic area. Individual transform faults also exhibit significant anomalies owing to the complex local tectonic and magmatic processes.
  • †These authors contributed equally to this work
  • loading
  • [1]
    Baines A G, Cheadle M J, Dick H J B, et al. 2003. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, Southwest Indian Ridge. Geology, 31(12): 1105–1108. doi: 10.1130/G19829.1
    [2]
    Behn M D, Lin J, Zuber M T. 2002. Evidence for weak oceanic transform faults. Geophysical Research Letters, 29(24): 2207. doi: 10.1029/2002GL015612
    [3]
    Bird P, Kagan Y Y, Jackson D D. 2002. Plate tectonics and earthquake potential of spreading ridges and oceanic transform faults. In: Stein S, Freymueller J T, eds. Plate Boundary Zones. Washington, DC: Geodynamics Series, 203–218
    [4]
    Boettcher M S, Jordan T H. 2004. Earthquake scaling relations for mid-ocean ridge transform faults. Journal of Geophysical Research: Solid Earth, 109(B12): B12302. doi: 10.1029/2004JB003110
    [5]
    Bonatti E, Ligi M, Gasperini L, et al. 1994. Transform migration and vertical tectonics at the Romanche fracture zone, equatorial Atlantic. Journal of Geophysical Research: Solid Earth, 99(B11): 21779–21802. doi: 10.1029/94JB01178
    [6]
    Chen Y S, Morgan W J. 1990. Rift valley/no rift valley transition at mid-ocean ridges. Journal of Geophysical Research: Solid Earth, 95(B11): 17571–17581. doi: 10.1029/JB095iB11p17571
    [7]
    Croon M B, Cande S C, Stock J M. 2008. Revised pacific-Antarctic plate motions and geophysics of the Menard fracture zone. Geochemistry, Geophysics, Geosystems, 9(7): Q07001. doi: 10.1029/2008GC002019
    [8]
    Dick H, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412. doi: 10.1038/nature02128
    [9]
    Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. doi: 10.1016/0031-9201(81)90046-7
    [10]
    Ekström G, Nettles M, Dziewoński A M. 2012. The global CMT project 2004–2010 : Centroid-moment tensors for 13, 017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201: 1–9. doi: 10.1016/j.pepi.2012.04.002
    [11]
    Embley R W, Wilson D S. 1992. Morphology of the Blanco transform fault zone-NE Pacific: implications for its tectonic evolution. Marine Geophysical Researches, 14(1): 25–45. doi: 10.1007/BF01674064
    [12]
    Fornari D J, Gallo D G, Edwards M H, et al. 1989. Structure and topography of the Siqueiros transform fault system: Evidence for the development of intra-transform spreading centers. Marine Geophysical Researches, 11(4): 263–299. doi: 10.1007/BF00282579
    [13]
    Fox P J, Gallo D G. 1984. A tectonic model for ridge-transform-ridge plate boundaries: Implications for the structure of oceanic lithosphere. Tectonophysics, 104(3–4): 205–242. doi: 10.1016/0040-1951(84)90124-0
    [14]
    Georgen J E, Lin J, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets. Earth and Planetary Science Letters, 187(3–4): 283–300. doi: 10.1016/S0012-821X(01)00293-X
    [15]
    Gregg P M, Lin J, Smith D K. 2006. Segmentation of transform systems on the East Pacific Rise: Implications for earthquake processes at fast-slipping oceanic transform faults. Geology, 34(4): 289–292. doi: 10.1130/G22212.1
    [16]
    Gregg P M, Lin J, Behn M D, et al. 2007. Spreading rate dependence of gravity anomalies along oceanic transform faults. Nature, 448(7150): 183–187. doi: 10.1038/nature05962
    [17]
    Kanamori H. 1977. The energy release in great earthquakes. Journal of Geophysical Research, 82(20): 2981–2987. doi: 10.1029/JB082i020p02981
    [18]
    Karson J A, Dick H J B. 1983. Tectonics of ridge-transform intersections at the Kane fracture zone. Marine Geophysical Research, 6(1): 51–98. doi: 10.1007/BF00300398
    [19]
    Kreemer C, Haines J, Holt W E, et al. 2000. On the determination of a global strain rate model. Earth, Planets and Space, 52(10): 765–770. doi: 10.1186/BF03352279
    [20]
    Ligi M, Bonatti E, Gasperini L, et al. 2002. Oceanic broad multifault transform plate boundaries. Geology, 30(1): 11–14. doi: 10.1130/0091-7613(2002)030<0011:OBMTPB>2.0.CO;2
    [21]
    Lin J, Parmentier E M. 1989. Mechanisms of lithospheric extension at mid-ocean ridges. Geophysical Journal International, 96(1): 1–22. doi: 10.1111/j.1365-246X.1989.tb05246.x
    [22]
    Lin J, Purdy G M, Schouten H, et al. 1990. Evidence from gravity data for focusedmagmatic accretion along the Mid-Atlantic Ridge. Nature, 344: 627–632. doi: 10.1038/344627a0
    [23]
    Lin J, Morgan J P. 1992. The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophysical Research Letters, 19(1): 13–16. doi: 10.1029/91GL03041
    [24]
    Livermore R A, Tomlinson J S, Woollett R W. 1991. Unusual sea-floor fabric near the Bullard fracture zone imaged by GLORIA sidescan sonar. Nature, 353(6340): 158–161. doi: 10.1038/353158a0
    [25]
    Lonsdale P. 1994. Structural geomorphology of the Eltanin fault system and adjacent transform faults of the Pacific-Antarctic plate boundary. Marine Geophysical Researches, 16(2): 105–143. doi: 10.1007/BF01224756
    [26]
    Macdonald K C. 1982. Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Annual Review of Earth and Planetary Sciences, 10: 155–190. doi: 10.1146/annurev.ea.10.050182.001103
    [27]
    Magde L S, Detrick R S. 1995. Crustal and upper mantle contribution to the axial gravity anomaly at the southern East Pacific Rise. Journal of Geophysical Research: Solid Earth, 100(B3): 3747–3766. doi: 10.1029/94JB02869
    [28]
    Maia M. 2019. Topographic and morphologic evidences of deformation at oceanic transform faults: Far-field and local-field stresses. In: Duarte J C, ed. Transform Plate Boundaries and Fracture Zones. Amsterdam: Elsevier, 61–87, doi: 10.1016/B978-0-12-812064-4.00003-7
    [29]
    Morgan J P, Parmentier E M. 1984. Lithospheric stress near a ridge-transform intersection. Geophysical Research Letters, 11(2): 113–116. doi: 10.1029/GL011i002p00113
    [30]
    Perfit M R, Fornari D J, Ridley W I, et al. 1996. Recent volcanism in the Siqueiros transform fault: Picritic basalts and implications for MORB magma genesis. Earth and Planetary Science Letters, 141(1–4): 91–108. doi: 10.1016/0012-821X(96)00052-0
    [31]
    Pockalny R A, Detrick R S, Fox P J. 1988. Morphology and tectonics of the Kane transform from Sea Beam bathymetry data. Journal of Geophysical Research: Solid Earth, 93(B4): 3179–3193. doi: 10.1029/JB093iB04p03179
    [32]
    Pockalny R A, Fox P J, Fornari D J, et al. 1997. Tectonic reconstruction of the Clipperton and Siqueiros Fracture Zones: Evidence and consequences of plate motion change for the last 3 Myr. Journal of Geophysical Research: Solid Earth, 102(B2): 3167–3181. doi: 10.1029/96JB03391
    [33]
    Roland E, Behn M D, Hirth G. 2010. Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity. Geochemistry, Geophysics, Geosystems, 11(7): Q07001. doi: 10.1029/2010GC003034
    [34]
    Royden L H, Horváth F, Burchfiel B C. 1982. Transform faulting, extension, and subduction in the Carpathian Pannonian region. GSA Bulletin, 93(8): 717–725. doi: 10.1130/0016-7606(1982)93<717:TFEASI>2.0.CO;2
    [35]
    Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67. doi: 10.1126/science.1258213
    [36]
    Sclater J G, Grindlay N R, Madsen J A, et al. 2005. Tectonic interpretation of the Andrew Bain transform fault: Southwest Indian Ocean. Geochemistry, Geophysics, Geosystems, 6(9): Q09K10. doi: 10.1029/2005GC000951
    [37]
    Searle R C. 1983. Multiple, closely spaced transform faults in fast-slipping fracture zones. Geology, 11(10): 607–610. doi: 10.1130/0091-7613(1983)11<607:MCSTFI>2.0.CO;2
    [38]
    Searle R C, Thomas M V, Jones E J W. 1994. Morphology and tectonics of the Romanche Transform and its environs. Marine Geophysical Researches, 16(6): 427–453. doi: 10.1007/bf01270518
    [39]
    Sempéré J C, Lin J, Brown H S, et al. 1993. Segmentation and morphotectonic variations along a slow-spreading center: The Mid-Atlantic Ridge (24°00′N–30°40′N). Marine Geophysical Researches, 15(3): 153–200. doi: 10.1007/BF01204232
    [40]
    Shaw W J, Lin J. 1996. Models of ocean ridge lithospheric deformation: Dependence on crustal thickness, spreading rate, and segmentation. Journal of Geophysical Research: Solid Earth, 101(B8): 17977–17993. doi: 10.1029/96JB00949
    [41]
    Sleep N H. 1969. Sensitivity of heat flow and gravity to the mechanism of sea-floor spreading. Journal of Geophysical Research, 74(2): 542–549. doi: 10.1029/JB074i002p00542
    [42]
    Sleep N H, Biehler S. 1970. Topography and tectonics at the intersections of fracture zones with central rifts. Journal of Geophysical Research, 75(14): 2748–2752. doi: 10.1029/JB075i014p02748
    [43]
    Tapponnier P, Francheteau J. 1978. Necking of the lithosphere and the mechanics of slowly accreting plate boundaries. Journal of Geophysical Research: Solid Earth, 83(B8): 3955–3970. doi: 10.1029/JB083iB08p03955
    [44]
    Tozer B, Sandwell D T, Smith W H F, et al. 2019. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6(10): 1847–1864. doi: 10.1029/2019EA000658
    [45]
    Tucholke B E, Lin J. 1994. A geological model for the structure of ridge segments in slow spreading ocean crust. Journal of Geophysical Research: Solid Earth, 99(B6): 11937–11958. doi: 10.1029/94JB00338
    [46]
    Tucholke B E, Schouten H. 1988. Kane fracture zone. Marine Geophysical Researches, 10(1–2): 1–39. doi: 10.1007/BF02424659
    [47]
    Turcotte D L, Schubert G. 2014. Geodynamics. 3rd ed. Cambridge, United Kingdom: Cambridge University Press, 636
    [48]
    Wei M. 2019. Seismic behavior on oceanic transform faults at the East Pacific Rise. In Duarte J C, ed. Transform Plate Boundaries and Fracture Zones. Amsterdam: Elsevier, 119–143, doi: 10.1016/B978-0-12-812064-4.00006-2
    [49]
    Wilson J T. 1965. A new class of faults and their bearing on continental drift. Nature, 207(4995): 343–347. doi: 10.1038/207343a0
    [50]
    Wolfson-Schwehr M. 2015. The relationship between oceanic transform fault segmentation, seismicity, and thermal structure [dissertation]. Durham: University of New Hampshire, https://scholars.unh.edu/dissertation/2233
    [51]
    Wolfson-Schwehr M, Boettcher M S. 2019. Global characteristics of oceanic transform fault structure and seismicity. In: Duarte J C, ed. Transform Plate Boundaries and Fracture Zones. Amsterdam: Elsevier, 21–59, doi: 10.1016/B978-0-12-812064-4.00002-5
    [52]
    Zhang Tao, Lin Jian, Gao Jinyao. 2020. Asymmetric crustal structure of the ultraslow-spreading Mohns Ridge. International Geology Review, 62(5): 568–584. doi: 10.1080/00206814.2019.1627586
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(14)

    Article Metrics

    Article views (1173) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return