Volume 40 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Guanghua Hao, Hui Shen, Yongming Sun, Chunhua Li. Rapid decrease in Antarctic sea ice in recent years[J]. Acta Oceanologica Sinica, 2021, 40(7): 119-128. doi: 10.1007/s13131-021-1762-x
Citation: Guanghua Hao, Hui Shen, Yongming Sun, Chunhua Li. Rapid decrease in Antarctic sea ice in recent years[J]. Acta Oceanologica Sinica, 2021, 40(7): 119-128. doi: 10.1007/s13131-021-1762-x

Rapid decrease in Antarctic sea ice in recent years

doi: 10.1007/s13131-021-1762-x
Funds:  The National Key R&D Program of China under contract Nos 2018YFA0605902 and 2018YFA0605903; the National Natural Science Foundation of China under contract Nos 41606218 and 41941009; the fund of Chinese National Antarctic Research Expedition logistics support item.
More Information
  • Corresponding author: E-mail: sym@ouc.edu.cn
  • Received Date: 2020-10-13
  • Accepted Date: 2020-11-13
  • Available Online: 2021-06-29
  • Publish Date: 2021-07-25
  • A 41-year Antarctic sea ice concentration (SIC) dataset derived from satellite passive microwave radiometers during the period of 1979–2019 has been used to analyze sea ice changes in recent decades. The trends of SIC and sea ice extent (SIE) are calculated during the periods of 1979–2019, 1979–2013, and 2014–2019. The trends show regionally dependent features. The SIC shows an increasing trend in most of the regions except the Bellingshausen Sea and Amundsen Sea (BA) during 1979–2019 and 1979–2013. The SIE trend shows a decreasing or decelerating trend in the period of 1979–2019 ((6 835±2 210) km2/a) compared with the 1979–2013 period ((18 600±2 203) km2/a). In recent years (2014–2019), the SIC and SIE have exhibited decreasing trends (–(34 567±3 521) km2/month), especially in the Weddell Sea (WS) and Ross Sea (RS) during summer and autumn. The trends are related to regionally dependent causes. The analyses show that the SIC and SIE decreased in response to the warming trend of 2 m air temperature (Ta-2m) and have exhibited a good relationship with Ta-2m in summer and autumn in recent years. The sea ice decrease in the Antarctic is mainly caused by increases in absorbed energy and southward energy transportation in recent years, such as the increase in gained solar radiation and moist static energy from the south, which demonstrate notable regional characteristics. In the WS region, the local positive feedback from the additional absorbed solar radiation, resulting in warmer air and reduced sea ice, is the main reason for the sea ice decrease in recent years. The increase in southward energy transport has also favored a decrease in sea ice. In the RS region, the increase in southward-transported moist static energy has contributed to the decrease in sea ice, and the increases in cloud cover and longwave radiation have prevented sea ice growth.
  • loading
  • [1]
    Bromwich D H, Nicolas J P, Monaghan A J, et al. 2013. Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience, 6(2): 139–145. doi: 10.1038/NGEO1671
    [2]
    Cavalieri D J, Crawford J, Drinkwater M, et al. 1992. NASA sea ice validation program for the DMSP SSM/I: final report. NASA Technical Memorandum 104559. Washington, DC: National Aeronautics and Space Administration
    [3]
    Cavalieri D J, Gloersen P, Parkinson C L, et al. 1997. Observed hemispheric asymmetry in global sea ice changes. Science, 278(5340): 1104–1106. doi: 10.1126/science.278.5340.1104
    [4]
    Cavalieri D J, Parkinson C L. 2008. Antarctic sea ice variability and trends, 1979−2006. Journal of Geophysical Research: Oceans, 113(C7): C07004. doi: 10.1029/2007JC004564
    [5]
    Cavalieri D J, Parkinson L C, Gloersen P, et al. 1996. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, Version 1. [Antarctic, 1979 to 2019]. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center, doi: https://doi.org/10.5067/8GQ8LZQVL0VL
    [6]
    Cerrone D, Fusco G. 2018. Low-frequency climate modes and Antarctic sea ice variations, 1982–2013. Journal of Climate, 31(1): 147–175. doi: 10.1175/JCLI-D-17-0184.1
    [7]
    Comiso J C, Gersten R A, Stock L V, et al. 2017a. Positive trend in the Antarctic sea ice cover and associated changes in surface temperature. Journal of Climate, 30(6): 2251–2267. doi: 10.1175/JCLI-D-16-0408.1
    [8]
    Comiso J C, Meier W N, Gersten R. 2017b. Variability and trends in the Arctic Sea ice cover: results from different techniques. Journal of Geophysical Research: Oceans, 122(8): 6883–6900. doi: 10.1002/2017JC012768
    [9]
    Comiso J C, Nishio F. 2008. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. Journal of Geophysical Research: Oceans, 113(C2): C02S07. doi: 10.1029/2007JC004257
    [10]
    Curry J A, Schramm J L, Ebert E E. 1995. Sea ice-albedo climate feedback mechanism. Journal of Climate, 8(2): 240–247. doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
    [11]
    Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656): 553–597. doi: 10.1002/qj.828
    [12]
    Doddridge E W, Marshall J. 2017. Modulation of the seasonal cycle of Antarctic sea ice extent related to the southern annular mode. Geophysical Research Letters, 44(19): 9761–9768. doi: 10.1002/2017GL074319
    [13]
    Elders A, Pegion K. 2019. Diagnosing sea ice from the north American multi model ensemble and implications on mid-latitude winter climate. Climate Dynamics, 53(12): 7237–7250. doi: 10.1007/s00382-017-4049-3
    [14]
    Francis J A, Hunter E. 2006. New insight into the disappearing Arctic sea ice. Eos, Transactions American Geophysical Union, 87(46): 509–511. doi: 10.1029/2006EO460001
    [15]
    Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. doi: 10.1002/qj.3803
    [16]
    Holland M M, Landrum L, Kostov Y, et al. 2017. Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models. Climate Dynamics, 49(5): 1813–1831. doi: 10.1007/s00382-016-3424-9
    [17]
    Kapsch M L, Graversen R G, Tjernström M. 2013. Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Climate Change, 3(8): 744–748. doi: 10.1038/nclimate1884
    [18]
    Kjellsson J, Döös K, Laliberté F B, et al. 2014. The atmospheric general circulation in thermodynamical coordinates. Journal of the Atmospheric Sciences, 71(3): 916–928. doi: 10.1175/JAS-D-13-0173.1
    [19]
    Lee S K, Volkov D L, Lopez H, et al. 2017. Wind-driven ocean dynamics impact on the contrasting sea-ice trends around West Antarctica. Journal of Geophysical Research: Oceans, 122(5): 4413–4430. doi: 10.1002/2016JC012416
    [20]
    Liu Jiping, Curry J A, Martinson D G. 2004. Interpretation of recent Antarctic sea ice variability. Geophysical Research Letters, 31(2): L02205. doi: 10.1029/2003GL018732
    [21]
    Marshall G J. 2003. Trends in the southern annular mode from observations and reanalyses. Journal of Climate, 16(24): 4134–4143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
    [22]
    Marshall G J. 2007. Half-century seasonal relationships between the southern annular mode and Antarctic temperatures. International Journal of Climatology, 27(3): 373–383. doi: 10.1002/joc.1407
    [23]
    Meehl G A, Arblaster J M, Chung C T Y, et al. 2019. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nature Communications, 10(1): 14. doi: 10.1038/s41467-018-07865-9
    [24]
    Naud C M, Booth J F, Del Genio A D, et al. 2014. Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. Journal of Climate, 27(5): 2109–2124. doi: 10.1175/JCLI-D-13-00432.1
    [25]
    Nicolas J P, Bromwich D H. 2014. New reconstruction of Antarctic near-surface temperatures: multidecadal trends and reliability of global reanalyses. Journal of Climate, 27(21): 8070–8093. doi: 10.1175/JCLI-D-13-00733.1
    [26]
    Parkinson C L, Cavalieri D J. 2012. Antarctic sea ice variability and trends, 1979–2010. The Cryosphere, 6(4): 871–880. doi: 10.5194/tc-6-871-2012
    [27]
    Parkinson C L. 2019. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 116(29): 14414–14423. doi: 10.1073/pnas.1906556116
    [28]
    Schlosser E, Haumann F A, Raphael M N. 2017. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay. The Cryosphere, 12(3): 1103–1119. doi: 10.5194/tc-12-1103-2018
    [29]
    Shu Qi, Qiao Fangli, Song Zhenya, et al. 2012. Sea ice trends in the Antarctic and their relationship to surface air temperature during 1979–2009. Climate Dynamics, 38(11): 2355–2363. doi: 10.1007/s00382-011-1143-9
    [30]
    Simpkins G R, Ciasto L M, England M H. 2013. Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophysical Research Letters, 40(14): 3643–3648. doi: 10.1002/grl.50715
    [31]
    Stammerjohn S E, Martinson D G, Smith R C, et al. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research: Oceans, 113(C3): C03S90. doi: 10.1029/2007JC004269
    [32]
    Stuecker M F, Bitz C M, Armour K C, et al. 2017. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophysical Research Letters, 44(17): 9008–9019. doi: 10.1002/2017GL074691
    [33]
    Thompson D W J, Wallace J M. 2000. Annular modes in the extratropical circulation. part I: month-to-month variability. Journal of Climate, 13(5): 1000–1016. doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
    [34]
    Turner J, Phillips T, Marshall G J, et al. 2017. Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophysical Research Letters, 44(13): 6868–6875. doi: 10.1002/2017GL073656
    [35]
    Vaughan D G, Marshall G J, Connolley W M, et al. 2003. Recent rapid regional climate warming on the Antarctic peninsula. Climatic Change, 60(3): 243–274. doi: 10.1023/A:1026021217991
    [36]
    Wang Guomin, Hendon H H, Arblaster J M, et al. 2019. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nature Communications, 10(1): 13. doi: 10.1038/s41467-018-07689-7
    [37]
    Wu Yang, Wang Zhaomin, Liu Chengyan, et al. 2020. Impacts of high-frequency atmospheric forcing on Southern Ocean circulation and Antarctic sea ice. Advances in Atmospheric Sciences, 37(5): 515–531. doi: 10.1007/s00376-020-9203-x
    [38]
    Yao Bin, Teng Shiwen, Lai Ruize, et al. 2020. Can atmospheric reanalyses (CRA and ERA5) represent cloud spatiotemporal characteristics?. Atmospheric Research, 244: 105091. doi: 10.1016/j.atmosres.2020.105091
    [39]
    Yuan Naiming, Ding Minghu, Ludescher J, et al. 2017. Increase of the Antarctic Sea Ice Extent is highly significant only in the Ross Sea. Scientific Reports, 7: 41096. doi: 10.1038/srep41096
    [40]
    Zhang Jinlun. 2007. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. Journal of Climate, 20(11): 2515–2529. doi: 10.1175/JCLI4136.1
    [41]
    Zwally H J, Comiso J C, Parkinson C L, et al. 2002. Variability of Antarctic sea ice 1979–1998. Journal of Geophysical Research: Oceans, 107(C5): 3041. doi: 10.1029/2000JC000733
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (409) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return