Volume 40 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Jinfeng Ma, Hailong Liu, Pengfei Lin, Haigang Zhan. Effects of the seasonal variation in chlorophyll concentration on sea surface temperature in the global ocean[J]. Acta Oceanologica Sinica, 2021, 40(11): 50-61. doi: 10.1007/s13131-021-1765-7
Citation: Jinfeng Ma, Hailong Liu, Pengfei Lin, Haigang Zhan. Effects of the seasonal variation in chlorophyll concentration on sea surface temperature in the global ocean[J]. Acta Oceanologica Sinica, 2021, 40(11): 50-61. doi: 10.1007/s13131-021-1765-7

Effects of the seasonal variation in chlorophyll concentration on sea surface temperature in the global ocean

doi: 10.1007/s13131-021-1765-7
Funds:  The National Key R&D Program for Developing Basic Sciences under contract Nos 2018YFA0605703, 2016YFC1401601 and 2016YFC1401401; the National Natural Science Foundation of China under contract Nos 41931182, 41931183, 41976026 and 41776030; the State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences Program under contract No. LTO1912; the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0305.
More Information
  • Corresponding author: lhl@lasg.iap.ac.cn
  • Received Date: 2020-10-19
  • Accepted Date: 2021-11-24
  • Available Online: 2021-11-25
  • Publish Date: 2021-11-30
  • The effects of biological heating on the upper-ocean temperature of the global ocean are investigated using two ocean-only experiments forced by prescribed atmospheric fields during 1990–2007, on with fixed constant chlorophyll concentration, and the other with seasonally varying chlorophyll concentration. Although the existence of high chlorophyll concentrations can trap solar radiation in the upper layer and warm the surface, cooling sea surface temperature (SST) can be seen in some regions and seasons. Seventeen regions are selected and classified according to their dynamic processes, and the cooling mechanisms are investigated through heat budget analysis. The chlorophyll-induced SST variation is dependent on the variation in chlorophyll concentration and net surface heat flux and on such dynamic ocean processes as mixing, upwelling and advection. The mixed layer depth is also an important factor determining the effect. The chlorophyll-induced SST warming appears in most regions during the local spring to autumn when the mixed layer is shallow, e.g., low latitudes without upwelling and the mid-latitudes. Chlorophyll-induced SST cooling appears in regions experiencing strong upwelling, e.g., the western Arabian Sea, west coast of North Africa, South Africa and South America, the eastern tropical Pacific Ocean and the Atlantic Ocean, and strong mixing (with deep mixed layer depth), e.g., the mid-latitudes in winter.
  • loading
  • [1]
    Anderson W G, Gnanadesikan A, Hallberg R, et al. 2007. Impact of ocean color on the maintenance of the Pacific Cold Tongue. Geophysical Research Letters, 34(11): L11609. doi: 10.1029/2007GL030100
    [2]
    Ballabrera-Poy J, Murtugudde R, Zhang Ronghua, et al. 2007. Coupled ocean–atmosphere response to seasonal modulation of ocean color: impact on interannual climate simulations in the Tropical Pacific. Journal of Climate, 20(2): 353–374. doi: 10.1175/JCLI3958.1
    [3]
    Du Yan, Qu Tangdong, Meyers G, et al. 2005. Seasonal heat budget in the mixed layer of the southeastern tropical Indian Ocean in a high-resolution ocean general circulation model. Journal of Geophysical Research: Oceans, 110(C4): C04012
    [4]
    Gnanadesikan A, Anderson W G. 2009. Ocean water clarity and the ocean general circulation in a coupled climate model. Journal of Physical Oceanography, 39(2): 314–332. doi: 10.1175/2008JPO3935.1
    [5]
    Jerlov N G. 1968. Optical Oceanography. Amsterdam: Elsevier, 194
    [6]
    Jochum M, Yeager S, Lindsay K, et al. 2010. Quantification of the feedback between phytoplankton and ENSO in the community climate system model. Journal of Climate, 23(11): 2916–2925. doi: 10.1175/2010JCLI3254.1
    [7]
    Kang Xianbiao, Zhang Ronghua, Gao Chuan, et al. 2017. An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community earth system model. Scientific Reports, 7: 17123. doi: 10.1038/s41598-017-17390-2
    [8]
    Kara A B, Rochford P A, Hurlburt H E. 2000. An optimal definition for ocean mixed layer depth. Journal of Geophysical Research: Oceans, 105(C7): 16803–16821. doi: 10.1029/2000JC900072
    [9]
    Large W, Yeager S. 2004. Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR technical note NCAR/TN-460+STR Technical Report, 105. doi: 10.5065/D6KK98Q6.NationalCenterforAtmosphericResearch,Boulder,Colo
    [10]
    Lengaigne M, Menkes C, Aumont O, et al. 2007. Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Climate Dynamics, 28(5): 503–516. doi: 10.1007/s00382-006-0200-2
    [11]
    Lewis M R, Carr M E, Feldman G C, et al. 1990. Influence of penetrating solar radiation on the heat budget of the Equatorial Pacific Ocean. Nature, 347(6293): 543–545. doi: 10.1038/347543a0
    [12]
    Lewis M R, Cullen J J, Platt T. 1983. Phytoplankton and thermal structure in the Upper ocean: consequences of nonuniformity in chlorophyll profile. Journal of Geophysical Research: Oceans, 88(C4): 2565–2570. doi: 10.1029/JC088iC04p02565
    [13]
    Lin Pengfei, Liu Hailong, Zhang Xuehong. 2007. Sensitivity of the upper ocean temperature and circulation in the equatorial pacific to solar radiation penetration due to phytoplankton. Advances in Atmospheric Sciences, 24(5): 765–780. doi: 10.1007/s00376-007-0765-7
    [14]
    Lin Pengfei, Yu Yongqiang, Liu Hailong. 2013a. Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2. Advances in Atmospheric Sciences, 30(1): 175–192. doi: 10.1007/s00376-012-2042-7
    [15]
    Lin Pengfei, Yu Yongqiang, Liu Hailong. 2013b. Oceanic Climatology in the Coupled Model FGOALS-g2: Improvements and Biases. Advances in Atmospheric Sciences, 30(3): 819–840. doi: 10.1007/s00376-012-2137-1
    [16]
    Liu Hailong, Ma Jinfeng, Lin Pengfei, et al. 2012a. Numerical study of the effects of ocean color on the sea surface temperature in the southeast tropical Indian Ocean: the role of the barrier layer. Environmental Research Letters, 7(2): 024010. doi: 10.1088/1748-9326/7/2/024010
    [17]
    Liu Hailong, Lin Pengfei, Yu Yongqiang, et al. 2012b. The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2. Acta Meteorologica Sinica, 26(3): 318–329. doi: 10.1007/s13351-012-0305-y
    [18]
    Liu Hailong, Yu Yongqiang, Li Wei, et al. 2004a. Manual for LASG/IAP Climate system Ocean Model (LICOM1.0). Beijing: Science Press, 128
    [19]
    Liu Hailong, Zhang Xuehong, Li Wei, et al. 2004b. An eddy-permitting oceanic general circulation model and its preliminary evaluation. Advances in Atmospheric Sciences, 21(5): 675–690. doi: 10.1007/BF02916365
    [20]
    Locarnini R A, Mishonov A V, Antonov J I, et al. 2013. World Ocean Atlas 2013, Volume 1: Temperature. NOAA Atlas NESDIS 73, 40
    [21]
    Löptien U, Eden C, Timmermann A, et al. 2009. Effects of biologically induced differential heating in an eddy-permitting coupled ocean-ecosystem model. Journal of Geophysical Research: Oceans, 114(C6): C06011
    [22]
    Ma Jinfeng, Liu Hailong, Zhan Haigang, et al. 2012. Effects of chlorophyll on upper ocean temperature and circulation in the upwelling regions of the South China Sea. Aquatic Ecosystem Health & Management, 15(2): 127–134
    [23]
    Ma Jinfeng, Liu Hailong, Lin Pengfei, et al. 2014. Seasonality of biological feedbacks on sea surface temperature variations in the Arabian Sea: The role of mixing and upwelling. Journal of Geophysical Research: Oceans, 119(11): 7592–7604. doi: 10.1002/2014JC010186
    [24]
    Ma Jinfeng, Liu Hailong, Lin Pengfei, et al. 2015. Effects of the interannual variability in chlorophyll concentrations on sea surface temperatures in the east tropical Indian Ocean. Journal of Geophysical Research: Oceans, 120(10): 7015–7027. doi: 10.1002/2015JC010862
    [25]
    Manizza M, Le Quéré C, Watson A J, et al. 2005. Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophysical Research Letters, 32(5): L05603
    [26]
    Marzeion B, Timmermann A, Murtugudde R, et al. 2005. Biophysical Feedbacks in the Tropical Pacific. Journal of Climate, 18(1): 58–70. doi: 10.1175/JCLI3261.1
    [27]
    Murtugudde R, Beauchamp J, McClain C R, et al. 2002. Effects of penetrative radiation on the upper tropical ocean circulation. Journal of Climate, 15(5): 470–486. doi: 10.1175/1520-0442(2002)015<0470:EOPROT>2.0.CO;2
    [28]
    Nakamoto S, Kumar S P, Oberhuber J M, et al. 2001. Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophysical Research Letters, 28(10): 2021–2024. doi: 10.1029/2000GL012494
    [29]
    Ohlmann J C. 2003. Ocean radiant heating in climate models. Journal of Climate, 16(9): 1337–1351. doi: 10.1175/1520-0442(2003)16<1337:ORHICM>2.0.CO;2
    [30]
    Sathyendranath S, Gouveia A D, Shetye S R, et al. 1991. Biological control of surface temperature in the Arabian Sea. Nature, 349(6304): 54–56. doi: 10.1038/349054a0
    [31]
    Siegel D A, Ohlmann J C, Washburn L, et al. 1995. Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool. Journal of Geophysical Research: Oceans, 100(C3): 4885–4891. doi: 10.1029/94JC03128
    [32]
    Sweeney C, Gnanadesikan A, Griffies S M, et al. 2005. Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. Journal of Physical Oceanography, 35(6): 1103–1119. doi: 10.1175/JPO2740.1
    [33]
    Tian Feng, Zhang Ronghua, Wang Xiujun. 2020. Effects on ocean biology induced by El Niño-accompanied positive freshwater flux anomalies in the tropical Pacific. Journal of Geophysical Research: Oceans, 125(1): e2019JC015790
    [34]
    Wetzel P, Maier-Reimer E, Botzet M, et al. 2006. Effects of ocean biology on the penetrative radiation in a coupled climate model. Journal of Climate, 19(16): 3973–3987. doi: 10.1175/JCLI3828.1
    [35]
    Wu Yongsheng, Tang C C L, Sathyendranath S, et al. 2007. The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(23–26): 2630–2642
    [36]
    Yu Yongqiang, Zhang Xuehong, Guo Yufu. 2004. Global coupled ocean-atmosphere general circulation models in LASG/IAP. Advances in Atmospheric Sciences, 21(3): 444–455. doi: 10.1007/BF02915571
    [37]
    Zhang Ronghua. 2015. Structure and effect of ocean biology-induced heating (OBH) in the tropical Pacific, Diagnosed from a hybrid coupled model simulation. Climate Dynamics, 44(3): 695–715. doi: 10.1007/s00382-014-2231-4
    [38]
    Zhang Ronghua, Tian Feng, Wang Xiujun. 2018. Ocean chlorophyll-induced heating feedbacks on ENSO in a coupled ocean physics-biology model forced by prescribed wind anomalies. Journal of Climate, 31(5): 1811–1832. doi: 10.1175/JCLI-D-17-0505.1
    [39]
    Zhang Ronghua, Tian Feng, Zhi Hai, et al. 2019. Observed structural relationships between ocean chlorophyll variability and its heating effects on the ENSO. Climate Dynamics, 53(9): 5165–5186
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (951) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return