Volume 40 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Wenjin Sun, Yu Liu, Gengxin Chen, Wei Tan, Xiayan Lin, Yuping Guan, Changming Dong. Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea[J]. Acta Oceanologica Sinica, 2021, 40(10): 17-29. doi: 10.1007/s13131-021-1770-x
Citation: Wenjin Sun, Yu Liu, Gengxin Chen, Wei Tan, Xiayan Lin, Yuping Guan, Changming Dong. Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea[J]. Acta Oceanologica Sinica, 2021, 40(10): 17-29. doi: 10.1007/s13131-021-1770-x

Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea

doi: 10.1007/s13131-021-1770-x
Funds:  The National Natural Science Foundation of China under contract Nos 41906008, 41806039, 41806030, 42076021, 41676010 and 41706205; the State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences under contract Nos LTO1902 and LTO1807; the Strategic Priority Research Program of Chinese Academy of Sciences under contract No. XDB42000000; the Youth Innovation Promotion Association CAS under contract No. 2017397; the Pearl River S&T Nova Program of Guangzhou under contract No. 201806010105; the Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, MNR under contract No. QNHX2022; the Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology under contract No. 2019r049; the Startup Foundation for Introducing Talent of Zhejiang Ocean University; the National Key Research Programs of China under contract Nos 2016YFC1401407 and 2017YFA0604100; the National Programme on Global Change and Air-Sea Interaction under contract Nos GASI-IPOVAI-03 and GASI-IPOVAI-05; the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. 311020004.
More Information
  • Corresponding author: E-mail: cmdong@nuist.edu.cn
  • Received Date: 2020-10-31
  • Accepted Date: 2020-12-28
  • Available Online: 2021-09-01
  • Publish Date: 2021-10-25
  • In general, a mesoscale cyclonic (anticyclonic) eddy has a colder (warmer) core, and it is considered as a cold (warm) eddy. However, recently research found that there are a number of “abnormal” mesoscale cyclonic (anticyclonic) eddies associated with warm (cold) cores in the South China Sea (SCS). These “abnormal” eddies pose a challenge to previous works on eddy detection, characteristic analysis, eddy-induced heat and salt transports, and even on mesoscale eddy dynamics. Based on a 9-year (2000–2008) numerical modelling data, the cyclonic warm-core eddies (CWEs) and anticyclonic cold-core eddies (ACEs) in the SCS are analyzed. This study found that the highest incidence area of the “abnormal” eddies is the northwest of Luzon Strait. In terms of the eddy snapshot counting method, 8 620 CWEs and 9 879 ACEs are detected, accounting for 14.6% and 15.8% of the total eddy number, respectively. The size of the “abnormal” eddies is usually smaller than that of the “normal” eddies, with the radius only around 50 km. In the generation time aspect, they usually appear within the 0.1–0.3 interval in the normalized eddy lifespan. The survival time of CWEs (ACEs) occupies 16.3% (17.1%) of the total eddy lifespan. Based on two case studies, the intrusion of Kuroshio warm water is considered as a key mechanism for the generation of these “abnormal” eddies near the northeastern SCS.
  • loading
  • [1]
    Byrne D, Münnich M, Frenger I, et al. 2016. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean. Nature Communications, 7: ncomms11867. doi: 10.1038/ncomms11867
    [2]
    Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2–4): 106–119. doi: 10.1016/j.pocean.2008.10.013
    [3]
    Chelton D B, Gaube P, Schlax M G, et al. 2011. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332. doi: 10.1126/science.1208897
    [4]
    Chen Gengxin, Gan Jianping, Xie Qiang, et al. 2012. Eddy heat and salt transports in the South China Sea and their seasonal modulations. Journal of Geophysical Research: Oceans, 117(C5): C05021. doi: 10.1029/2011JC007724
    [5]
    Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research: Oceans, 116(C6): C06018. doi: 10.1029/2010JC006716
    [6]
    Chen Gengxin, Wang Dongxiao, Dong Changming, et al. 2015. Observed deep energetic eddies by seamount wake. Scientific Reports, 5: 17416. doi: 10.1038/srep17416
    [7]
    Chi P C, Chen Yuchun, Lu Shihua. 1998. Wind-driven South China Sea deep basin warm-core/cool-core eddies. Journal of Oceanography, 54(4): 347–360. doi: 10.1007/bf02742619
    [8]
    Chu Xiaoqing, Xue Huijie, Qi Yiquan, et al. 2014. An exceptional anticyclonic eddy in the South China Sea in 2010. Journal of Geophysical Research: Oceans, 119(2): 881–897. doi: 10.1002/2013JC009314
    [9]
    Doglioli A M, Blanke B, Speich S, et al. 2007. Tracking coherent structures in a regional ocean model with wavelet analysis: application to Cape Basin eddies. Journal of Geophysical Research: Oceans, 112(C5): C05043. doi: 10.1029/2006JC003952
    [10]
    Dong Changming, Lin Xiayan, Liu Yu, et al. 2012. Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product. Journal of Geophysical Research: Oceans, 117(C7): C00H14. doi: 10.1029/2011JC007354
    [11]
    Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5: 3294. doi: 10.1038/ncomms4294
    [12]
    He Qingyou, Zhan Haigang, Cai Shuqun, et al. 2016. Eddy effects on surface chlorophyll in the northern South China Sea: mechanism investigation and temporal variability analysis. Deep-Sea Research Part I: Oceanographic Research Papers, 112: 25–36. doi: 10.1016/j.dsr.2016.03.004
    [13]
    He Qingyou, Zhan Haigang, Cai Shuqun, et al. 2018. A new assessment of mesoscale eddies in the South China Sea: surface features, three-dimensional structures, and thermohaline transports. Journal of Geophysical Research: Oceans, 123(7): 4906–4929. doi: 10.1029/2018JC014054
    [14]
    Hu Jianyu, Gan Jianping, Sun Zhenyu, et al. 2011. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05016. doi: 10.1029/2010JC006810
    [15]
    Hu Jianyu, Kawamura H, Hong Huasheng, et al. 2000. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. Journal of Oceanography, 56(6): 607–624. doi: 10.1023/a:1011117531252
    [16]
    Itoh S, Yasuda I. 2010a. Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension region detected from the distribution of the sea surface height anomaly. Journal of Physical Oceanography, 40(5): 1018–1034. doi: 10.1175/2009JPO4265.1
    [17]
    Itoh S, Yasuda I. 2010b. Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the Subarctic North Pacific. Journal of Physical Oceanography, 40(12): 2624–2642. doi: 10.1175/2010JPO4475.1
    [18]
    Ji Jinlin, Dong Changming, Zhang Biao, et al. 2017. An oceanic eddy statistical comparison using multiple observational data in the Kuroshio Extension region. Acta Oceanologica Sinica, 36(3): 1–7. doi: 10.1007/s13131-016-0882-1
    [19]
    Kadko D, Pickart R S, Mathis J. 2008. Age characteristics of a shelf-break eddy in the western Arctic and implications for shelf-basin exchange. Journal of Geophysical Research: Oceans, 113(C2): C02018. doi: 10.1029/2007jc004429
    [20]
    Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
    [21]
    Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4): 363–403. doi: 10.1029/94RG01872
    [22]
    Li Qiuyang, Sun Liang, Xu Chi. 2018. The lateral eddy viscosity derived from the decay of oceanic mesoscale eddies. Open Journal of Marine Science, 8(1): 152–172. doi: 10.4236/ojms.2018.81008
    [23]
    Lin Xiayan, Dong Changming, Chen Dake, et al. 2015. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep-Sea Research Part I: Oceanographic Research Papers, 99: 46–64. doi: 10.1016/j.dsr.2015.01.007
    [24]
    Liu Yu, Dong Changming, Guan Yuping, et al. 2012. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 68: 54–67. doi: 10.1016/j.dsr.2012.06.001
    [25]
    Liu Yu, Dong Changming, Liu Xiaohui, et al. 2017a. Antisymmetry of oceanic eddies across the Kuroshio over a shelfbreak. Scientific Reports, 7(1): 6761. doi: 10.1038/s41598-017-07059-1
    [26]
    Liu Shanshan, Sun Liang, Wu Qiaoyan, et al. 2017b. The responses of cyclonic and anticyclonic eddies to typhoon forcing: the vertical temperature-salinity structure changes associated with the horizontal convergence/divergence. Journal of Geophysical Research: Oceans, 122(6): 4974–4989. doi: 10.1002/2017JC012814
    [27]
    Ma Jing, Xu Haiming, Dong Changming, et al. 2015. Atmospheric responses to oceanic eddies in the Kuroshio Extension region. Journal of Geophysical Research: Atmospheres, 120(13): 6313–6330. doi: 10.1002/2014JD022930
    [28]
    Martin A P, Richards K J. 2001. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Research Part II: Topical Studies in Oceanography, 48(4–5): 757–773. doi: 10.1016/S0967-0645(00)00096-5
    [29]
    Mathis J T, Pickart R S, Hansell D A, et al. 2007. Eddy transport of organic carbon and nutrients from the Chukchi Shelf: impact on the upper halocline of the western Arctic Ocean. Journal of Geophysical Research: Oceans, 112(C5): C05011. doi: 10.1029/2006JC003899
    [30]
    McGillicuddy Jr D J. 2015. Formation of intrathermocline lenses by eddy–wind interaction. Journal of Physical Oceanography, 45(2): 606–612. doi: 10.1175/JPO-D-14-0221.1
    [31]
    Nan Feng, He Zhigang, Zhou Hui, et al. 2011. Three long-lived anticyclonic eddies in the northern South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05002. doi: 10.1029/2010JC006790
    [32]
    Nencioli F, Dong Changming, Dickey T, et al. 2010. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. Journal of Atmospheric and Oceanic Technology, 27(3): 564–579. doi: 10.1175/2009JTECHO725.1
    [33]
    Pickart R S, Weingartner T J, Pratt L J, et al. 2005. Flow of winter-transformed Pacific water into the Western Arctic. Deep-Sea Research Part II: Topical Studies in Oceanography, 52(24–26): 3175–3198. doi: 10.1016/j.dsr2.2005.10.009
    [34]
    Qiu Chunhua, Liang Hong, Huang Yan, et al. 2020. Development of double cyclonic mesoscale eddies at around Xisha Islands observed by a ‘Sea-Whale 2000’ autonomous underwater vehicle. Applied Ocean Research, 101: 102270. doi: 10.1016/j.apor.2020.102270
    [35]
    Qiu Chunhua, Mao Huabin, Liu Hailong, et al. 2019a. Deformation of a warm eddy in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(8): 5551–5564. doi: 10.1029/2019JC015288
    [36]
    Qiu Chunhua, Mao Huabin, Wang Yanhui, et al. 2019b. An irregularly shaped warm eddy observed by Chinese underwater gliders. Journal of Oceanography, 75(2): 139–148. doi: 10.1007/s10872-018-0490-0
    [37]
    Qu Tangdong. 2000. Upper-layer circulation in the South China Sea. Journal of Physical Oceanography, 30(6): 1450–1460. doi: 10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2
    [38]
    Rabinovich A B, Thomson R E, Bograd S J. 2002. Drifter observations of anticyclonic eddies near Bussol’ Strait, the Kuril Islands. Journal of Oceanography, 58(5): 661–671. doi: 10.1023/A:1022890222516
    [39]
    Rogachev K A. 2000. Recent variability in the Pacific western subarctic boundary currents and Sea of Okhotsk. Progress in Oceanography, 47(2–4): 299–336. doi: 10.1016/S0079-6611(00)00040-9
    [40]
    Shchepetkin A F, McWilliams J C. 2003. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. Journal of Geophysical Research: Oceans, 108(C3): 3090. doi: 10.1029/2001JC001047
    [41]
    Spall M A, Pickart R S, Fratantoni P S, et al. 2008. Western Arctic shelfbreak eddies: formation and transport. Journal of Physical Oceanography, 38(8): 1644–1668. doi: 10.1175/2007JPO3829.1
    [42]
    Su Danyi, Lin Pengfei, Mao Huabin, et al. 2020. Features of slope intrusion mesoscale eddies in the northern South China Sea. Journal of Geophysical Research: Oceans, 125(2): e2019JC015349. doi: 10.1029/2019JC015349
    [43]
    Sun Wenjin, Dong Changming, Tan Wei, et al. 2018. Vertical structure anomalies of oceanic eddies and eddy-induced transports in the South China Sea. Remote Sensing, 10(5): 795. doi: 10.3390/rs10050795
    [44]
    Sun Wenjin, Dong Changming, Tan Wei, et al. 2019. Statistical characteristics of cyclonic warm-core eddies and anticyclonic cold-core eddies in the North Pacific based on remote sensing data. Remote Sensing, 11(2): 208. doi: 10.3390/rs11020208
    [45]
    Sun Wenjin, Dong Changming, Wang Ruyun, et al. 2017. Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region. Journal of Geophysical Research: Oceans, 122(2): 1476–1496. doi: 10.1002/2016JC012226
    [46]
    Wang Huimeng, Du Yunyan, Liang Fuyuan, et al. 2019a. A census of the 1993–2016 complex mesoscale eddy processes in the South China Sea. Water, 11(6): 1208. doi: 10.3390/w11061208
    [47]
    Wang Zifei, Li Qiuyang, Sun Liang, et al. 2015a. The most typical shape of oceanic mesoscale eddies from global satellite sea level observations. Frontiers of Earth Science, 9(2): 202–208. doi: 10.1007/s11707-014-0478-z
    [48]
    Wang Guihua, Su Jilan, Chu P C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30(21): 2121. doi: 10.1029/2003GL018532
    [49]
    Wang Qiang, Zeng Lili, Chen Ju, et al. 2020. The linkage of Kuroshio intrusion and mesoscale eddy variability in the northern South China Sea: subsurface speed maximum. Geophysical Research Letters, 47(11): e2020GL087034. doi: 10.1029/2020GL087034
    [50]
    Wang Qiang, Zeng Lili, Li Jian, et al. 2018. Observed cross-shelf flow induced by mesoscale eddies in the northern South China Sea. Journal of Physical Oceanography, 48(7): 1609–1628. doi: 10.1175/JPO-D-17-0180.1
    [51]
    Wang Qiang, Zeng Lili, Zhou Weidong, et al. 2015b. Mesoscale eddies cases study at Xisha waters in the South China Sea in 2009/2010. Journal of Geophysical Research: Oceans, 120(1): 517–532. doi: 10.1002/2014jc009814
    [52]
    Wang Sen, Zhu Weijun, Ma Jing, et al. 2019b. Variability of the great whirl and its impacts on atmospheric processes. Remote Sensing, 11(3): 322. doi: 10.3390/rs11030322
    [53]
    Wu C R, Chiang T L. 2007. Mesoscale eddies in the northern South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(14–15): 1575–1588. doi: 10.1016/j.dsr2.2007.05.008
    [54]
    Xian Tao, Sun Liang, Yang Yuanjian, et al. 2012. Monsoon and eddy forcing of chlorophyll-a variation in the northeast South China Sea. International Journal of Remote Sensing, 33(23): 7431–7443. doi: 10.1080/01431161.2012.685970
    [55]
    Xiu Peng, Chai Fei, Shi Lei, et al. 2010. A census of eddy activities in the South China Sea during 1993–2007. Journal of Geophysical Research: Oceans, 115(C3): C03012. doi: 10.1029/2009JC005657
    [56]
    Xu Lixiao, Li Peiliang, Xie Shangping, et al. 2016. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nature Communications, 7: 10505. doi: 10.1038/ncomms10505
    [57]
    Xu Lixiao, Xie Shangping, Liu Qinyu, et al. 2017. Evolution of the North Pacific subtropical mode water in anticyclonic eddies. Journal of Geophysical Research: Oceans, 122(12): 10118–10130. doi: 10.1002/2017JC013450
    [58]
    Xu Lixiao, Xie Shangping, McClean J L, et al. 2014. Mesoscale eddy effects on the subduction of North Pacific mode waters. Journal of Geophysical Research: Oceans, 119(8): 4867–4886. doi: 10.1002/2014JC009861
    [59]
    Yang Yikai, Wang Dongxiao, Wang Qiang, et al. 2019. Eddy-induced transport of saline Kuroshio water into the northern South China Sea. Journal of Geophysical Research: Oceans, 124(9): 6673–6687. doi: 10.1029/2018JC014847
    [60]
    Yang Haiyuan, Wu Lixin, Liu Hailong, et al. 2013. Eddy energy sources and sinks in the South China Sea. Journal of Geophysical Research: Oceans, 118(9): 4716–4726. doi: 10.1002/jgrc.20343
    [61]
    Yang Xiao, Xu Guangjun, Liu Yu, et al. 2020. Multi-Source data analysis of mesoscale eddies and their effects on surface chlorophyll in the bay of Bengal. Remote Sensing, 12(21): 3485. doi: 10.3390/rs12213485
    [62]
    Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. Journal of Physical Oceanography, 47(4): 895–907. doi: 10.1175/JPO-D-16-0256.1
    [63]
    Yasuda I, Ito S I, Shimizu Y, et al. 2000. Cold-core anticyclonic eddies South of the Bussol’ Strait in the northwestern subarctic Pacific. Journal of Physical Oceanography, 30(6): 1137–1157. doi: 10.1175/1520-0485(2000)030<1137:CCAESO>2.0.CO;2
    [64]
    Zhang Huaimin, Bates J J, Reynolds R W. 2006. Assessment of composite global sampling: sea surface wind speed. Geophysical Research Letters, 33(17): L17714. doi: 10.1029/2006GL027086
    [65]
    Zhang Yanwei, Liu Zhifei, Zhao Yulong, et al. 2014a. Mesoscale eddies transport deep-sea sediments. Scientific Reports, 4: 5937. doi: 10.1038/srep05937
    [66]
    Zhang Yanwei, Liu Zhifei, Zhao Yulong, et al. 2015. Effect of surface mesoscale eddies on deep-sea currents and mixing in the northeastern South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 122: 6–14. doi: 10.1016/j.dsr2.2015.07.007
    [67]
    Zhang Wenzhou, Ni Qinbiao, Xue Huijie. 2018. Composite eddy structures on both sides of the Luzon Strait and influence factors. Ocean Dynamics, 68(11): 1527–1541. doi: 10.1007/s10236-018-1207-z
    [68]
    Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349. doi: 10.1038/srep24349
    [69]
    Zhang Zhengguang, Wang Wei, Qiu Bo. 2014b. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
    [70]
    Zhang Zhengguang, Zhang Yu, Wang Wei, et al. 2013. Universal structure of mesoscale eddies in the ocean. Geophysical Research Letters, 40(14): 3677–3681. doi: 10.1002/grl.50736
    [71]
    Zhang Zhiwei, Zhao Wei, Qiu Bo, et al. 2017. Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. Journal of Physical Oceanography, 47(6): 1243–1259. doi: 10.1175/JPO-D-16-0185.1
    [72]
    Zhong Linhao, Hua Lijuan, Luo Dehai. 2016. The eddy–mean flow interaction and the intrusion of western boundary current into the South China Sea–type basin in an idealized model. Journal of Physical Oceanography, 46(8): 2493–2527. doi: 10.1175/JPO-D-15-0220.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (982) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return