Volume 40 Issue 4
Jun.  2021
Turn off MathJax
Article Contents
Tianwei Shang, Xueyan Jiang, Chenqing Yu. 234U/238U as a potential tracer for tracking water masses mixing in the northern East China Sea[J]. Acta Oceanologica Sinica, 2021, 40(4): 23-31. doi: 10.1007/s13131-021-1773-7
Citation: Tianwei Shang, Xueyan Jiang, Chenqing Yu. 234U/238U as a potential tracer for tracking water masses mixing in the northern East China Sea[J]. Acta Oceanologica Sinica, 2021, 40(4): 23-31. doi: 10.1007/s13131-021-1773-7

234U/238U as a potential tracer for tracking water masses mixing in the northern East China Sea

doi: 10.1007/s13131-021-1773-7
Funds:  The National Natural Science Foundation of China under contract Nos 41876077 and 41530965; the National Key Research and Development Program of China under contract No. 2016YFA0601300.
More Information
  • Corresponding author: E-mail: jeanjxy@ouc.edu.cn
  • Received Date: 2020-03-19
  • Accepted Date: 2020-08-06
  • Available Online: 2021-04-16
  • Publish Date: 2021-06-03
  • The optimum multiparameter (OMP) method was often used to determine the percentages of water masses based on temperature, salinity and other parameters, like nutrient or dissolved oxygen (DO). There are a number of water masses in the East China Sea (ECS), a marginal sea of the western Pacific Ocean. However, it is difficult to clarify the proportion of water masses using traditional parameters, such as temperature, salinity, nutrient or DO because of the occurring of intensive biogeochemical processes in the near shore and shelf areas. Here, we reported the use of 234U/238U activity ratio embedded in the OMP method. The results indicate that seawater in the northern ECS mainly consisted of the estuarine water of Changjiang River (CEW), Kuroshio water (KW), and Yellow Sea Coastal Current (YSCC). In March 2017, the CEW only influenced the offshore waters shallower than 30 m; the KW affected the east edge and the YSCC contributed more than 75% in the northern ECS.
  • loading
  • [1]
    Adloff J P, Roessler K. 1991. Recoil and transmutation effects in the migration behaviour of actinides. Radiochimica Acta, 52–53: 269–274
    [2]
    Andersen M B, Erel Y, Bourdon B. 2009. Experimental evidence for 234U-238U fractionation during granite weathering with implications for 234U/238U in natural waters. Geochimica et Cosmochimica Acta, 73(14): 4124–4141. doi: 10.1016/j.gca.2009.04.020
    [3]
    Budillon G, Pacciaroni M, Cozzi S, et al. 2003. An optimum multiparameter mixing analysis of the shelf waters in the Ross Sea. Antarctic Science, 15(1): 105–118. doi: 10.1017/S095410200300110X
    [4]
    Carroll J, Moore W S. 1993. Uranium removal during low discharge in the Ganges-Brahmaputra mixing zone. Geochimica et Cosmochimica Acta, 57(21–22): 4987–4995
    [5]
    Chabaux F, Riotte J, Dequincey O. 2003. U-Th-Ra fractionation during weathering and river transport. Reviews in Mineralogy and Geochemistry, 52(1): 533–576. doi: 10.2113/0520533
    [6]
    Chen C T A. 2009. Chemical and physical fronts in the Bohai, Yellow and East China Seas. Journal of Marine Systems, 78(3): 394–410. doi: 10.1016/j.jmarsys.2008.11.016
    [7]
    Chen J H, Edwards R L, Wasserburg G J. 1986. 238U, 234U and 232Th in seawater. Earth and Planetary Science Letters, 80(3–4): 241–251
    [8]
    Chen C T A, Ruo R, Paid S C, et al. 1995. Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan. Continental Shelf Research, 15(1): 19–39. doi: 10.1016/0278-4343(93)E0001-O
    [9]
    Cheng Hai, Edwards R L, Hoff J, et al. 2000. The half-lives of uranium-234 and thorium-230. Chemical Geology, 169(1–2): 17–33
    [10]
    Dinauer A, Mucci A. 2018. Distinguishing between physical and biological controls on the spatial variability of pCO2: a novel approach using OMP water mass analysis (St. Lawrence, Canada). Marine Chemistry, 204: 107–120. doi: 10.1016/j.marchem.2018.03.007
    [11]
    Dunk R M, Mills R A, Jenkins W J. 2002. A reevaluation of the oceanic uranium budget for the Holocene. Chemical Geology, 190(1–4): 45–67
    [12]
    Fleischer R L. 1980. Isotopic disequilibrium of uranium: alpha-recoil damage and preferential solution effects. Science, 207(4434): 979–981. doi: 10.1126/science.207.4434.979
    [13]
    Gasparin F, Maes C, Sudre J, et al. 2014. Water mass analysis of the coral sea through an optimum multiparameter method. Journal of Geophysical Research: Oceans, 119(10): 7229–7244. doi: 10.1002/2014JC010246
    [14]
    Gu Hequan, Moore W S, Zhang Lei, et al. 2012. Using radium isotopes to estimate the residence time and the contribution of submarine groundwater discharge (SGD) in the Changjiang effluent plume, East China Sea. Continental Shelf Research, 35: 95–107. doi: 10.1016/j.csr.2012.01.002
    [15]
    Guo Laodong, Warnken K W, Santschi P H. 2007. Retention behavior of dissolved uranium during ultrafiltration: implications for colloidal U in surface waters. Marine Chemistry, 107(2): 156–166. doi: 10.1016/j.marchem.2007.06.017
    [16]
    Han I S, Kamio K, Matsuno T, et al. 2001. High frequency current fluctuations and cross-shelf flows around the pycnocline near the shelf break in the East China Sea. Journal of Oceanography, 57(2): 235–249. doi: 10.1023/A:1011199325842
    [17]
    Helland-Hansen B J. 1916. Nogen hydrografiske metoder. Forh Skaudinavioke Naturf Mӧte, 16: 357–359
    [18]
    Ho Chongben, Wang Yuanxiang, Lei Zongyou, et al. 1959. A prelimenary study of the formation of Yellow Sea Cold Mass and its properties. Oceanologia et Limnologia Sinica (in Chinese), 2(1): 11–15
    [19]
    Iseki K, Okamura K, Kiyomoto Y. 2003. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 50(2): 457–473. doi: 10.1016/S0967-0645(02)00468-X
    [20]
    Jacobsen J P. 1927. Eine graphsche methode zur bestimmung des vermischungs-koeffzienten in meere. Gerlands Beitrage Geophsik, 16: 404–412
    [21]
    Jiang Xueyan, Yu Zhigang, Ku T L, et al. 2007. Behavior of uranium in the Yellow River plume (Yellow river estuary). Estuaries and Coasts, 30(6): 919–926. doi: 10.1007/BF02841385
    [22]
    Kigoshi K. 1971. Alpha-Recoil thorium-234: dissolution into water and the uranium-234/uranium-238 disequilibrium in nature. Science, 173(3991): 47–48. doi: 10.1126/science.173.3991.47
    [23]
    Klein B, Tomczak M. 1994. Identification of diapycnal mixing through optimum multiparameter analysis: 2. Evidence for unidirectional diapycnal mixing in the front between North and South Atlantic Central Water. Journal of Geophysical Research: Oceans, 99(C12): 25275–25280. doi: 10.1029/94JC01948
    [24]
    Ku T L, Knauss K G, Mathieu G G. 1977. Uranuim in open ocean: concentration and isotopic composition. Deep Sea Research, 24(11): 1005–1017
    [25]
    Li Wenjian, Wang Zhenyan, Huang Haijun. 2019. Relationship between the southern Yellow Sea Cold Water Mass and the distribution and composition of suspended particulate matter in summer and autumn seasons. Journal of Sea Research, 154: 101812. doi: 10.1016/j.seares.2019.101812
    [26]
    Lian Ergang, Yang Shouye, Wu Hui, et al. 2016. Kuroshio subsurface water feeds the wintertime Taiwan warm current on the inner East China Sea shelf. Journal of Geophysical Research: Oceans, 121(7): 4790–4803. doi: 10.1002/2016JC011869
    [27]
    Lie H J, Cho C H. 2016. Seasonal circulation patterns of the Yellow and East China Seas derived from satellite-tracked drifter trajectories and hydrographic observations. Progress in Oceanography, 146: 121–141. doi: 10.1016/j.pocean.2016.06.004
    [28]
    Liu Qian, Jiang Xueyan, Sui Juanjuan, et al. 2018. Role of suspended particulate matter in regulating the behavior of dissolved uranium in the Yellow River estuary. Estuaries and Coasts, 41(6): 1667–1678. doi: 10.1007/s12237-018-0392-9
    [29]
    Liu Wei, Song Jinming, Yuan Huamao, et al. 2017. Dissolved barium as a tracer of Kuroshio incursion in the Kuroshio region east of Taiwan Island and the adjacent East China Sea. Science China: Earth Sciences, 60(7): 1356–1367. doi: 10.1007/s11430-016-9039-7
    [30]
    Liu Jingpu, Xu Kehui, Li Anchun, et al. 2007. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology, 85(3–4): 208–224
    [31]
    Maamaatuaiahutapu K, Garçon V C, Provost C, et al. 1992. Brazil-Malvinas confluence: water mass composition. Journal of Geophysical Research: Oceans, 97(C6): 9493–9505. doi: 10.1029/92JC00484
    [32]
    Maamaatuaiahutapu K, Garçon V C, Provost C, et al. 1994. Spring and winter water mass composition in the Brazil–Malvinas Confluence. Journal of Marine Research, 52(3): 397–426. doi: 10.1357/0022240943077064
    [33]
    Mackas D L, Denman K L, Bennett A F. 1987. Least squares multiple tracer analysis of water mass composition. Journal of Geophysical Research: Oceans, 92(C3): 2907–2918. doi: 10.1029/JC092iC03p02907
    [34]
    McKee B A, DeMaster D J, Nittrouer C A. 1987. Uranium geochemistry on the Amazon shelf: evidence for uranium release from bottom sediments. Geochimica et Cosmochimica Acta, 51(10): 2779–2786. doi: 10.1016/0016-7037(87)90157-8
    [35]
    Moore W S, Shaw T J. 2008. Fluxes and behavior of radium isotopes, barium, and uranium in seven Southeastern US rivers and estuaries. Marine Chemistry, 108(3–4): 236–254
    [36]
    Pardo P C, Pérez F F, Velo A, et al. 2012. Water masses distribution in the Southern Ocean: improvement of an extended OMP (eOMP) analysis. Progress in Oceanography, 103: 92–105. doi: 10.1016/j.pocean.2012.06.002
    [37]
    Poole R, Tomczak M. 1999. Optimum Multiparameter analysis of the water mass structure in the Atlantic Ocean thermocline. Deep Sea Research Part I: Oceanographic Research Papers, 46(11): 1895–1921. doi: 10.1016/S0967-0637(99)00025-4
    [38]
    Porcelli D, Andersson P S, Wasserburg G J, et al. 1997. The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea. Geochimica et Cosmochimica Acta, 61(19): 4095–4113. doi: 10.1016/S0016-7037(97)00235-4
    [39]
    Porcelli D, Andersson P S, Baskaran M, et al. 2001. Transport of U-and Th-series nuclides in a Baltic shield watershed and the Baltic Sea. Geochimica et Cosmochimica Acta, 65(15): 2439–2459. doi: 10.1016/S0016-7037(01)00610-X
    [40]
    Qi Jifeng, Yin Baoshu, Zhang Qilong, et al. 2014. Analysis of seasonal variation of water masses in East China Sea. Chinese Journal of Oceanology and Limnology, 32(4): 958–971. doi: 10.1007/s00343-014-3269-1
    [41]
    Robinson L F, Belshaw N S, Henderson G M. 2004. U and Th concentrations and isotope ratios in modern carbonates and waters from the Bahamas. Geochimica et Cosmochimica Acta, 68(8): 1777–1789. doi: 10.1016/j.gca.2003.10.005
    [42]
    Shen Chuanchou, Edwards R L, Cheng Hai, et al. 2002. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology, 185(3–4): 165–178
    [43]
    Su Yusong, Li Fengqi, Ma Helai, et al. 1989. Formation and seasonal variation of bottom cold water mass in northern area of the East China Sea. Journal of Ocean University of Qingdao (in Chinese), (S1): 1–14
    [44]
    Sui Juanjuan, Yu Zhigang, Xu Bochao, et al. 2014. Concentrations and fluxes of dissolved uranium in the Yellow River estuary: seasonal variation and anthropogenic (Water-Sediment Regulation Scheme) impact. Journal of Environmental Radioactivity, 128: 38–46. doi: 10.1016/j.jenvrad.2013.11.003
    [45]
    Swarzenski P W, McKee B A. 1998. Seasonal uranium distributions in the coastal waters off the Amazon and Mississippi rivers. Estuaries, 21(3): 379–390. doi: 10.2307/1352837
    [46]
    Swarzenski P W, McKee B A, Booth J G. 1995. Uranium geochemistry on the Amazon shelf: chemical phase partitioning and cycling across a salinity gradient. Geochimica et Cosmochimica Acta, 59(1): 7–18. doi: 10.1016/0016-7037(94)00371-R
    [47]
    Tan Ehui, Wang Guizhi, Moore W S, et al. 2018. Shelf-scale submarine groundwater discharge in the Northern South China Sea and East China Sea and its geochemical impacts. Journal of Geophysical Research: Oceans, 123(4): 2997–3013. doi: 10.1029/2017JC013405
    [48]
    Thompson R O R Y, Edwards R J. 1981. Mixing and water-mass formation in the Australian Subantarctic. Journal of Physical Oceanography, 11(10): 1399–1406. doi: 10.1175/1520-0485(1981)011<1399:MAWMFI>2.0.CO;2
    [49]
    Tomczak Jr M. 1981. A multi-parameter extension of temperature/salinity diagram techniques for the analysis of non-isopycnal mixing. Progress in Oceanography, 10(3): 147–171. doi: 10.1016/0079-6611(81)90010-0
    [50]
    Tomczak M. 1999. Some historical, theoretical and applied aspects of quantitative water mass analysis. Journal of Marine Research, 57(2): 275–303. doi: 10.1357/002224099321618227
    [51]
    Tomczak M, Large D G B. 1989. Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean. Journal of Geophysical Research: Oceans, 94(C11): 16141–16149. doi: 10.1029/JC094iC11p16141
    [52]
    Tomczak M, Liefrink S. 2005. Interannual variations of water mass volumes in the Southern Ocean. Journal of Atmospheric & Ocean Science, 10(1): 31–42
    [53]
    Wang Xilong, Baskaran M, Su Kaijun, et al. 2018. The important role of submarine groundwater discharge (SGD) to derive nutrient fluxes into river dominated ocean margins—the East China Sea. Marine Chemistry, 204: 121–132. doi: 10.1016/j.marchem.2018.05.010
    [54]
    Wang Jinlong, Du Jinzhou, Baskaran M, et al. 2016. Mobile mud dynamics in the East China Sea elucidated using 210Pb, 137Cs, 7Be, and 234Th as tracers. Journal of Geophysical Research: Oceans, 121(1): 224–239. doi: 10.1002/2015JC011300
    [55]
    Wang Jinlong, Fan Yukun, Liu Dantong, et al. 2019. Spatial and vertical distribution of 129I and 127I in the East China Sea: Inventory, source and transportation. Science of the Total Environment, 652: 177–188. doi: 10.1016/j.scitotenv.2018.10.248
    [56]
    Wang Lisheng, Ma Zhibang, Sun Zhilei, et al. 2017. U concentration and 234U/238U of seawater from the Okinawa Trough and Indian Ocean using MC-ICPMS with SEM protocols. Marine Chemistry, 196: 71–80. doi: 10.1016/j.marchem.2017.08.001
    [57]
    Wei Qinsheng, Wang Huiwu, Ge Renfeng, et al. 2013. Chemical hydrography and seasonal succession in the border between Yellow Sea and East China Sea. Oceanologia et Limnologia Sinica (in Chinese), 44(5): 1170–1181
    [58]
    Yanao S, Matsuno T. 2013. Characteristics of outer shelf water in the East China Sea. Journal of Oceanography, 69(2): 245–258. doi: 10.1007/s10872-012-0169-x
    [59]
    Yang Shilun, Zhang Jianmin, Zhu J, et al. 2005. Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response. Journal of Geophysical Research: Earth Surface, 110(F3): F03006
    [60]
    Zhang Jing, Liu Qian, Bai Lili, et al. 2018. Water mass analysis and contribution estimation using heavy rare earth elements: significance of Kuroshio intermediate water to Central East China Sea shelf water. Marine Chemistry, 204: 172–180. doi: 10.1016/j.marchem.2018.07.011
    [61]
    Zhang Liren, Liu Zhe, Zhang Jianmin, et al. 2007. Reevaluation of mixing among multiple water masses in the shelf: an example from the East China Sea. Continental Shelf Research, 27(15): 1969–1979. doi: 10.1016/j.csr.2007.04.002
    [62]
    Zhao Lijun, Liu Dantong, Wang Jinlong, et al. 2018. Spatial and vertical distribution of radiocesium in seawater of the East China Sea. Marine Pollution Bulletin, 128: 361–368. doi: 10.1016/j.marpolbul.2018.01.047
    [63]
    Zhou Jing, Du Jinzhou, Bi Qianqian, et al. 2016. The importance of the suspended sediment for the uranium non-conservative behavior in the Changjiang Estuary. Haiyang Xuebao (in Chinese), 38(12): 46–54
    [64]
    Zhou Jing, Du Jinzhou, Moore W S, et al. 2015. Concentrations and fluxes of uranium in two major Chinese rivers: the Changjiang River and the Huanghe River. Estuarine, Coastal and Shelf Science, 152: 56–64. doi: 10.1016/j.ecss.2014.11.004
    [65]
    Zhou Peng, Song Xiuxian, Yuan Yongquan, et al. 2018. Water mass analysis of the East China Sea and interannual variation of Kuroshio subsurface water intrusion through an optimum multiparameter method. Journal of Geophysical Research: Oceans, 123(5): 3723–3738. doi: 10.1029/2018JC013882
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (304) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return