Citation: | Shaoyuan Pan, Siquan Tian, Xuefang Wang, Libin Dai, Chunxia Gao, Jianfeng Tong. Comparing different spatial interpolation methods to predict the distribution of fishes: A case study of Coilia nasus in the Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2021, 40(8): 119-132. doi: 10.1007/s13131-021-1789-z |
[1] |
Auchincloss A H, Gebreab S Y, Mair C, et al. 2012. A review of spatial methods in epidemiology, 2000-2010. Annual Review of Public Health, 33: 107–122. doi: 10.1146/annurev-publhealth-031811-124655
|
[2] |
Beier P. 2001. Model selection and inference: A practical information-theoretic approach by Kenneth P. Burnham, David R. Anderson. The Journal of Wildlife Management, 65(3): 606–608. doi: 10.2307/3803117
|
[3] |
Bhunia G S, Shit P K, Maiti R. 2018. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences, 17(2): 114–126. doi: 10.1016/j.jssas.2016.02.001
|
[4] |
Chang Juihan, Chen Yong, Holland D, et al. 2010. Estimating spatial distribution of american lobster homarus americanus using habitat variables. Marine Ecology Progress Series, 420: 145–156. doi: 10.3354/meps08849
|
[5] |
Chen Yunlong, Shan Xiujuan, Jin Xianshi, et al. 2016. A comparative study of spatial interpolation methods for determining fishery resources density in the Yellow Sea. Acta Oceanologica Sinica, 35(12): 65–72. doi: 10.1007/s13131-016-0966-y
|
[6] |
Childs C. 2004. Interpolating surfaces in ArcGIS spatial analyst. ArcUser, 32–35
|
[7] |
Coburn T C. 2000. Geostatistics for natural resources evaluation. Technometrics, 42(4): 437–438
|
[8] |
Diaconu D C, Bretcan P, Peptenatu D, et al. 2019. The importance of the number of points, transect location and interpolation techniques in the analysis of bathymetric measurements. Journal of Hydrology, 570: 774–785. doi: 10.1016/j.jhydrol.2018.12.070
|
[9] |
Ding Qian, Wang Yong, Zhuang Dafang. 2018. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. Journal of Environmental Management, 212: 23–31
|
[10] |
Foehn A, Hernández J G, Schaefli B, et al. 2018. Spatial interpolation of precipitation from multiple rain gauge networks and weather radar data for operational applications in Alpine catchments. Journal of Hydrology, 563: 1092–1110. doi: 10.1016/j.jhydrol.2018.05.027
|
[11] |
Gao Chunxia, Tian Siquan, Dai Xiaojie. 2014. Estimation of biological parameters and yield per recruitment for Coilia nasustaihuensis in Dianshan Lake, Shanghai, China. Chinese Journal of Applied Ecology (in Chinese), 25(5): 1506–1512
|
[12] |
Gibson R N, Robb L, Burrows M T, et al. 1996. Tidal, diel and longer term changes in the distribution of fishes on a Scottish sandy beach. Marine Ecology Progress Series, 130: 1–17. doi: 10.3354/meps130001
|
[13] |
Hanley J A, McNeil B J. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1): 29–36. doi: 10.1148/radiology.143.1.7063747
|
[14] |
Hutchinson M F. 1995. Interpolating mean rainfall using thin plate smoothing splines. International Journal of Geographical Information Systems, 9(4): 385–403. doi: 10.1080/02693799508902045
|
[15] |
Isaaks E H, Srivastava R M. 1988. Spatial continuity measures for probabilistic and deterministic geostatistics. Mathematical Geology, 20(4): 313–341. doi: 10.1007/BF00892982
|
[16] |
Johnston K, Ver Hoef J M, Krivoruchko K, et al. 2001. Using ArcGIS Geostatistical Analyst. ESRI, 167–218
|
[17] |
Li Bai, Cao Jie, Chang Juihan, et al. 2015. Evaluation of effectiveness of fixed-station sampling for monitoring American lobster settlement. North American Journal of Fisheries Management, 35(5): 942–957. doi: 10.1080/02755947.2015.1074961
|
[18] |
Li Bai, Cao Jie, Guan Lisha, et al. 2018. Estimating spatial non-stationary environmental effects on the distribution of species: a case study from American lobster in the gulf of Maine. ICES Journal of Marine Science, 75(4): 1473–1482. doi: 10.1093/icesjms/fsy024
|
[19] |
Li Jin, Heap A D. 2008. A Review of Spatial Interpolation Methods for Environmental Scientists. Canberra, Australia: Geoscience Australia, 57–85
|
[20] |
Li Jin, Heap A D. 2011. A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecological Informatics, 6(3–4): 228–241. doi: 10.1016/j.ecoinf.2010.12.003
|
[21] |
Li Jin, Heap A D. 2014. Spatial interpolation methods applied in the environmental sciences: a review. Environmental Modelling & Software, 53: 173–189
|
[22] |
Li Jin, Heap A D, Potter A, et al. 2011. Application of machine learning methods to spatial interpolation of environmental variables. Environmental Modelling & Software, 26(12): 1647–1659
|
[23] |
Li Bai, Tanaka K R, Chen Yong, et al. 2017a. Assessing the quality of bottom water temperatures from the Finite-Volume Community Ocean Model (FVCOM) in the Northwest Atlantic Shelf region. Journal of Marine Systems, 173: 21–30. doi: 10.1016/j.jmarsys.2017.04.001
|
[24] |
Li Min, Zhang Chongliang, Xu Binduo, et al. 2017b. Evaluating the approaches of habitat suitability modelling for whitespotted conger (Conger myriaster). Fisheries Research, 195: 230–237. doi: 10.1016/j.fishres.2017.07.024
|
[25] |
Liu Xiaoxiao, Wang Jing, Zhang Yunlei, et al. 2019. Comparison between two GAMs in quantifying the spatial distribution of Hexagrammos otakii in Haizhou Bay, China. Fisheries Research, 218: 209–217. doi: 10.1016/j.fishres.2019.05.019
|
[26] |
Ma Jin, Li Bai, Zhao Jing, et al. 2020. Environmental influences on the spatio-temporal distribution of Coilia nasus in the Yangtze River estuary. Journal of Applied Ichthyology, 36(3): 315–325. doi: 10.1111/jai.14028
|
[27] |
Meul M, Van Meirvenne M. 2003. Kriging soil texture under different types of nonstationarity. Geoderma, 112(3–4): 217–233. doi: 10.1016/S0016-7061(02)00308-7
|
[28] |
Mitáš L, Mitášová H. 1988. General variational approach to the interpolation problem. Computers & Mathematics with Applications, 16(12): 983–992
|
[29] |
Mitášová H, Mitáš L. 1993. Interpolation by regularized spline with tension: I. Theory and implementation. Mathematical Geology, 25(6): 641–655. doi: 10.1007/BF00893171
|
[30] |
Mueller T G, Pusuluri N B, Mathias K K, et al. 2004. Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Science Society of America Journal, 68(6): 2042–2047. doi: 10.2136/sssaj2004.2042
|
[31] |
Nalder I A, Wein R W. 1998. Spatial interpolation of climatic Normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology, 92(4): 211–225. doi: 10.1016/S0168-1923(98)00102-6
|
[32] |
Pessanha A L M, Araújo F G. 2003. Spatial, temporal and diel variations of fish assemblages at two sandy beaches in the Sepetiba Bay, Rio de Janeiro, Brazil. Estuarine, Coastal and Shelf Science, 57(5–6): 817–828. doi: 10.1016/S0272-7714(02)00411-0
|
[33] |
Ribeiro J, Bentes L, Coelho R, et al. 2006. Seasonal, tidal and diurnal changes in fish assemblages in the Ria Formosa lagoon (Portugal). Estuarine, Coastal and Shelf Science, 67(3): 461–474. doi: 10.1016/j.ecss.2005.11.036
|
[34] |
Rivoirard J, Wieland K. 2001. Correcting for the effect of daylight in abundance estimation of juvenile haddock (Melanogrammus aeglefinus) in the North Sea: an application of Kriging with external drift. ICES Journal of Marine Science, 58(6): 1272–1285. doi: 10.1006/jmsc.2001.1112
|
[35] |
Rufino M M, Bez N, Brind'Amour A. 2019. Influence of data pre-processing on the behavior of spatial indicators. Ecological Indicators, 99: 108–117. doi: 10.1016/j.ecolind.2018.11.058
|
[36] |
Rufo M, Antolín A, Paniagua J M, et al. 2018. Optimization and comparison of three spatial interpolation methods for electromagnetic levels in the AM band within an urban area. Environmental Research, 162: 219–225. doi: 10.1016/j.envres.2018.01.014
|
[37] |
Sagarese S R, Frisk M G, Cerrato R M, et al. 2014. Application of generalized additive models to examine ontogenetic and seasonal distributions of spiny dogfish (Squalus acanthias) in the Northeast (US) shelf large marine ecosystem. Canadian Journal of Fisheries and Aquatic Sciences, 71(6): 847–877. doi: 10.1139/cjfas-2013-0342
|
[38] |
Selleslagh J, Amara R. 2008. Environmental factors structuring fish composition and assemblages in a small macrotidal estuary (eastern English Channel). Estuarine, Coastal and Shelf Science, 79(3): 507–517. doi: 10.1016/j.ecss.2008.05.006
|
[39] |
Shan Xiujuan, Chen Yunlong, Jin Xianshi. 2017. Projecting fishery ecosystem health under climate change scenarios: Yangtze River Estuary and Yellow River Estuary. Progress in Fishery Sciences (in Chinese), 38(2): 1–7
|
[40] |
Shen Huanting, Mao Zhichang, Zhu Jianrong. 2003. Saltwater Intrusion in the Yangtze River Estuary (in Chinese). Beijing: China Ocean Press, 10–20
|
[41] |
Shen Qingsong, Wang Yao, Wang Xinrui, et al. 2019. Comparing interpolation methods to predict soil total phosphorus in the Mollisol area of Northeast China. Catena, 174: 59–72. doi: 10.1016/j.catena.2018.10.052
|
[42] |
Shepard D. 1968. A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference. New York, NY, USA: ACM, 517–524
|
[43] |
Simier M, Laurent C, Ecoutin J M, et al. 2006. The Gambia River Estuary: A reference point for estuarine fish assemblages studies in West Africa. Estuarine, Coastal and Shelf Science, 69(3–4): 615–628. doi: 10.1016/j.ecss.2006.05.028
|
[44] |
Stow C A, Jolliff J, McGillicuddy D J, et al. 2009. Skill assessment for coupled biological/physical models of marine systems. Journal of Marine Systems, 76(1–2): 4–15. doi: 10.1016/j.jmarsys.2008.03.011
|
[45] |
Tang Changsheng, Zhang Fang, Feng Song, et al. 2017. Biological community of fishery resources in the Yangtze River Estuary and adjacent sea areas in the summer of 2015. Marine Fisheries (in Chinese), 39(5): 490–499
|
[46] |
Thomson R E, Emery W J. 2014. Data Analysis Methods in Physical Oceanography. 3rd ed. Amsterdam, the Netherlands: Elsevier, 219–302
|
[47] |
Tong Jiaqi, Chen Jinhui, Gao Chunxia, et al. 2018. Temporal-spatial distribution of Coilia nasus in the Yangtze River Estuary based on habitat suitability index. Journal of Shanghai Ocean University (in Chinese), 27(4): 584–593
|
[48] |
Vicente-Serrano S, Saz-Sánchez M A, Cuadrat J M. 2003. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Climate Research, 24: 161–180. doi: 10.3354/cr024161
|
[49] |
Wang Jing, Xu Binduo, Zhang Chongliang, et al. 2018. Evaluation of alternative stratifications for a stratified random fishery-independent survey. Fisheries Research, 207: 150–159. doi: 10.1016/j.fishres.2018.06.019
|
[50] |
Wu Jianhui, Dai Libin, Dai Xiaojie, et al. 2019. Comparison of generalized additive model and boosted regression tree in predicting fish community diversity in the Yangtze River Estuary, China. Chinese Journal of Applied Ecology (in Chinese), 30(2): 644–652
|
[51] |
Yu Hao, Jiao Yan, Carstensen L W. 2013. Performance comparison between spatial interpolation and GLM/GAM in estimating relative abundance indices through a simulation study. Fisheries Research, 147: 186–195. doi: 10.1016/j.fishres.2013.06.002
|
[52] |
Yu Hao, Jiao Yan, Su Zhenming, et al. 2012. Performance comparison of traditional sampling designs and adaptive sampling designs for fishery-independent surveys: a simulation study. Fisheries Research, 113(1): 173–181. doi: 10.1016/j.fishres.2011.10.009
|
[53] |
Zhang Minying, Xu Dongpo, Liu Kai, et al. 2005. Studies on biological characteristics and change of resource of Coilia nasus Schlegel in the lower reaches of the Yangtze River. Resources and Environment in the Yangtze Basin (in Chinese), 14(6): 694–698
|
[54] |
Zhao Jing, Cao Jie, Tian Siquan, et al. 2014. A comparison between two GAM models in quantifying relationships of environmental variables with fish richness and diversity indices. Aquatic Ecology, 48(3): 297–312. doi: 10.1007/s10452-014-9484-1
|
[55] |
Zou K H, O'Malley A J, Mauri L. 2007. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 115(5): 654–657. doi: 10.1161/CIRCULATIONAHA.105.594929
|
AOS-40-8-PanShaoyuan-supplementary.pdf |