Citation: | Liangduo Shen, Zhili Zou, Zhaode Zhang, Yun Pan. Exact solution and approximate solution of irregular wave radiation stress for non-breaking wave[J]. Acta Oceanologica Sinica, 2021, 40(7): 58-67. doi: 10.1007/s13131-021-1809-z |
[1] |
Bao Silin, Nishimura H. 2000. A new model for analyses of nearshore current. Haiyang Xuebao (in Chinese), 22(5): 115–123
|
[2] |
Bowen A J. 1969. Rip currents: 1. Theoretical investigations. Journal of Geophysical Research, 74(23): 5467–5478. doi: 10.1029/JC074i023p05467
|
[3] |
Cao Zude, Wang Guifen. 1993. A numerical model for sediment entrainment by wave and sediment transport by tidal current. Haiyang Xuebao (in Chinese), 15(1): 107–118
|
[4] |
Feddersen F. 2004. Effect of wave directional spread on the radiation stress: comparing theory and observations. Coastal Engineering, 51(5−6): 473–481. doi: 10.1016/j.coastaleng.2004.05.008
|
[5] |
Goda Y.1999. A comparative review on the functional forms of directional wave spectrum. Coastal Engineering Journal, 41(1): 9900002
|
[6] |
Hasselmann K, Barnett T P, Bouws E, et al. 1973. Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP). In: Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift. Hamburg: Deutsches Hydrographisches Institut
|
[7] |
Li Mengguo, Shi Zhong, Li Wendan. 2006. A mathematical model for irregular multi-directional wave propagation incorporating multi-factors of transformation in the coastal waters: I. Setup of the model. Journal of Hydrodynamics (in Chinese), 21A(4): 444–450
|
[8] |
Longuet-Higgins M S, Stewart R W. 1964. Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Research and Oceanographic Abstracts, 11(4): 529–562. doi: 10.1016/0011-7471(64)90001-4
|
[9] |
Mellor G. 2011. Wave radiation stress. Ocean Dynamics, 61(5): 563–568. doi: 10.1007/s10236-010-0359-2
|
[10] |
Shen Liangduo, Zou Zhili, Tang Zhibo, et al. 2016. Experimental study and numerical simulation of mean longshore current for mild slope. Journal of Ship Mechanics (in Chinese), 20(8): 973–982
|
[11] |
Song Honglin, Kuang Cuiping, Wang Xiaohua, et al. 2020. Wave-current interactions during extreme weather conditions in southwest of Bohai Bay, Ocean Engineering, 216(12): 108068
|
[12] |
Svendsen I A. 1984. Wave heights and set-up in a surf zone. Coastal Engineering, 8(4): 303–329. doi: 10.1016/0378-3839(84)90028-0
|
[13] |
Tang Jun, Shen Yongming, Cui Lei, et al. 2008. Numerical simulation of random wave-induced near-shore currents. Chinese Journal of Theoretical and Applied Mechanics (in Chinese), 40(4): 455–463
|
[14] |
Willmott C J. 1981. On the validation of models. Physical Geography, 2(2): 184–194. doi: 10.1080/02723646.1981.10642213
|
[15] |
Xia Huayong, Xia Zongwan, Zhu Liangsheng. 2004. Vertical variation in radiation stress and wave-induced current. Coastal Engineering, 51(4): 309–321. doi: 10.1016/j.coastaleng.2004.03.003
|
[16] |
Xia Meng, Mao Miaohua, Niu Qianru. 2020. Implementation and comparison of the recent three-dimensional radiation stress theory and vortex-force formalism in an unstructured-grid coastal circulation model. Estuarine Coastal and Shelf Science, 240(9): 106771
|
[17] |
Yao Yu, Liu Yicheng, Chen Long, et al. 2020. Study on the wave-driven current around the surf zone over fringing reefs. Ocean Engineering, 198(5): 106968
|
[18] |
Zheng Yonghong, Shen Yongming, Qiu Dahong. 2000. Calculation of wave radiation stresses connected with the parabolic mild-slope equation. Haiyang Xuebao (in Chinese), 22(6): 110–116
|
[19] |
Zou Zhili. 2009. Coastal Hydrodynamics (in Chinese). Beijing: China Communications Press, 110–112
|