Volume 40 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Yamin Yang, Zhigang Zeng, Xuebo Yin, Xiaoyuan Wang, Shuai Chen, Haiyan Qi, Zuxing Chen, Bowen Zhu. Mineralogy, geochemistry, and sulfur isotope characteristics of sediment-hosted hydrothermal sulfide minerals from the southern Okinawa Trough[J]. Acta Oceanologica Sinica, 2021, 40(10): 129-143. doi: 10.1007/s13131-021-1836-9
Citation: Yamin Yang, Zhigang Zeng, Xuebo Yin, Xiaoyuan Wang, Shuai Chen, Haiyan Qi, Zuxing Chen, Bowen Zhu. Mineralogy, geochemistry, and sulfur isotope characteristics of sediment-hosted hydrothermal sulfide minerals from the southern Okinawa Trough[J]. Acta Oceanologica Sinica, 2021, 40(10): 129-143. doi: 10.1007/s13131-021-1836-9

Mineralogy, geochemistry, and sulfur isotope characteristics of sediment-hosted hydrothermal sulfide minerals from the southern Okinawa Trough

doi: 10.1007/s13131-021-1836-9
Funds:  The National Natural Science Foundation of China under contract No. 91958213; the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDB42020402; the National Programma on Global Change and Air-Sea Interaction under contract No. GASI-GEOGE-02; the International Partnership Program of the Chinese Academy of Sciences under contract No. 133137KYSB20170003; the Special Fund for the Taishan Scholar Program of Shandong Province under contract No. ts201511061; the National Key Basic Research Program of China under contract No. 2013CB429700.
More Information
  • Corresponding author: E-mail: zgzeng@ms.qdio.ac.cn
  • Received Date: 2020-10-25
  • Accepted Date: 2021-03-26
  • Available Online: 2021-09-18
  • Publish Date: 2021-10-30
  • Studies of the mineralogy and sulfur isotope composition of sediment-hosted hydrothermal sulfide minerals in cores are important for understanding the seafloor mineralization environment and material source and reconstructing the hydrothermal history. However, the source of ore-forming materials and the history of hydrothermal activity in the southern Okinawa Trough (SOT) remain unclear. Here, the mineralogy and sulfur isotope characteristics of sulfides from gravity core HOBAB4-S2, collected between the Yonaguni Knoll IV hydrothermal field (HF) and the Tangyin HF, was investigated. Enrichments in Zn (up to 321×10−6), Cu (up to 73.7×10−6), and Pb (up to 160×10−6) and the presence of pyrite, galena, pyrrhotite and minor sphalerite and chalcopyrite provide evidence for the input of hydrothermal materials into the sediments. The pyrite morphologies include disseminated cubic, pentagonal dodecahedron, and framboidal forms. Except for minor framboidal pyrite, euhedral pyrite from core HOBAB4-S2 is mainly of hydrothermal origin with Co/Ni ratios >1 and S/Fe atomic ratios <2 in the Cu-Zn-Pb-rich layers. The occurrences of hexagonal pyrrhotite, high-Co (up to 0.17%) pyrite and high-Fe sphalerite indicate that the hydrothermal precipitates formed at medium-high temperatures and low-sulfur fugacity (fS2) environments. The δ34S values of sulfides (0.21‰–3.45‰) with low- fS2 mineral assemblages (e.g., pyrrhotite ± high-Fe sphalerite) in the core are significantly lower than those of magmatic rocks and seawater, indicating possible incorporation of previously formed biogenic sulfur in the sediment. Combined with the age model of the core, it is suggested that hydrothermal activity likely began in the Tangyin HF before AD 1445–1483 and that at least three active episodes may have occurred since then.
  • Yang Yamin, Zeng Zhigang, Liu Xiting, et al. Fine-grained turbidites in the southern Okinawa Trough and its implication for earthquakes activity in the past 700 years. Geological Journal (Major revision).
  • loading
  • [1]
    Adachi M, Yamamoto K, Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity. Sedimentary Geology, 47(1–2): 125–148. doi: 10.1016/0037-0738(86)90075-8
    [2]
    Agarwal D K, Roy P, Prakash L S, et al. 2020. Hydrothermal signatures in sediments from eastern Southwest Indian Ridge 63°E to 68°E. Marine Chemistry, 218: 103732. doi: 10.1016/j.marchem.2019.103732
    [3]
    Arnold R G. 1969. Pyrrhotite phase relation below 304. Economic Geology, 64(4): 405–419. doi: 10.2113/gsecongeo.64.4.405
    [4]
    Bajwah Z U, Seccombe P K, Offler R. 1987. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineralium Deposita, 22(4): 292–300. doi: 10.1007/BF00204522
    [5]
    Bao Zhian, Chen Lu, Zong Chunlei, et al. 2017. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS. International Journal of Mass Spectrometry, 421: 255–262. doi: 10.1016/j.ijms.2017.07.015
    [6]
    Barrett T J, Taylor P N, Lugoqski J. 1987. Metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect. Geochimica et Cosmochimica Acta, 51(9): 2241–2253. doi: 10.1016/0016-7037(87)90278-X
    [7]
    Beaulieu S E, Baker E T, German C R, et al. 2013. An authoritative global database for active submarine hydrothermal vent fields. Geochemistry, (11): 4892–4905. doi: 10.1002/2013GC004998
    [8]
    Beaulieu S E, Szafranski K. 2018. InterRidge Global Database of Active Submarine Hydrothermal Vent Fields. [WWW Document]. Electronic Publication Version 3.4. URLhttp://vents-data.interridge.org3.23.19[2018-10-8].
    [9]
    Bischoff J L, Rosenbauer R J. 1985. An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). American Journal of Science, 285(8): 725–763. doi: 10.2475/ajs.285.8.725
    [10]
    Boström K, Peterson M N A, Joensuu O, et al. 1969. Aluminum-poor ferromanganoan sediments on active oceanic ridges. Journal of Geophysical Research, 74(12): 3261–3270. doi: 10.1029/JB074i012p03261
    [11]
    Brunner B, Bernasconi S M. 2005. A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochimica et Cosmochimica Acta, 69(20): 4759–4771. doi: 10.1016/j.gca.2005.04.015
    [12]
    Cai Yuanji. Zhou Mao. 1994. Crystalomorphological Characteristics of Pyrite in Hydrothermal Gold Deposit—An Experimental Study. Science in China Series B-Chemistry, (1): 119–131
    [13]
    Cao Hong, Sun Zhilei, Liu Changling, et al. 2018. Origin of natural sulfur-metal chimney in the Tangyin hydrothermal field, okinawa trough: constraints from rare earth element and sulfur isotopic compositions. China Geology, 1(2): 225–235. doi: 10.31035/cg2018023
    [14]
    Carpenter R H, Desborough G A. 1964. Range in solid solution and structure of naturally occurring troilite and pyrrhotite. American Mineralogist, 49(9−10): 1350–1365
    [15]
    Chen Lu, Chen Kaiyun, Bao Zhian, et al. 2017. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32(1): 107–116. doi: 10.1039/C6JA00270F
    [16]
    Chen Zuxing, Zeng Zhigang, Wang Xiaoyuan, et al. 2018. U-Th/He dating and chemical compositions of apatite in the dacite from the southwestern okinawa trough: implications for petrogenesis. Journal of Asian Earth Sciences, 161: 1–13. doi: 10.1016/j.jseaes.2018.04.032
    [17]
    Chung Y C, Hung G W. 2000. Particulate fluxes and transports on the slope between the southern East China Sea and the South Okinawa Trough. Continental Shelf Research, 20(4–5): 571–597. doi: 10.1016/S0278-4343(99)00086-2
    [18]
    Clark C, Grguric B, Mumm A S. 2004. Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences, northeastern South Australia. Ore Geology Reviews, 25(3–4): 237–257. doi: 10.1016/j.oregeorev.2004.04.003
    [19]
    de Ronde C E J, Hannington M D, Stoffers P, et al. 2005. Evolution of a submarine magmatic-hydrothermal system: Brothers Volcano, Southern Kermadec Arc, New Zealand. Economic Geology, 100(6): 1097–1133. doi: 10.2113/gsecongeo.100.6.1097
    [20]
    Dias Á S, Mills R A, Taylor R N, et al. 2008. Geochemistry of a sediment push-core from the Lucky Strike hydrothermal field, Mid-Atlantic Ridge. Chemical Geology, 247(3–4): 339–351. doi: 10.1016/j.chemgeo.2007.10.015
    [21]
    Diekmann B, Hofmann J, Henrich R, et al. 2008. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary. Marine Geology, 255(1–2): 83–95. doi: 10.1016/j.margeo.2008.08.001
    [22]
    Dou Yanguang, Yang Shouye, Shi Xuefa, et al. 2016. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: Geochemical and Sr–Nd–Pb isotopic evidences. Chemical Geology, 425: 93–109. doi: 10.1016/j.chemgeo.2016.01.029
    [23]
    Drummond S E, Ohmoto H. 1985. Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80(1): 126–147. doi: 10.2113/gsecongeo.80.1.126
    [24]
    Feely R A, Lewison M, Massoth G J, et al. 1987. Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge. Journal of Geophysical Research:Solid Earth, 92(B11): 11347–11363. doi: 10.1029/JB092iB11p11347
    [25]
    Gena K, Chiba H, Kase K, et al. 2013. The tiger sulfide chimney, Yonaguni Knoll IV hydrothermal field, Southern Okinawa Trough, Japan: the first reported occurrence of Pt–Cu–Fe-Bearing Bismuthinite and Sn-Bearing Chalcopyrite in an active seafloor hydrothermal system. Resource Geology, 63(4): 360–370. doi: 10.1111/rge.12015
    [26]
    German C R, Higgs N C, Thomson J, et al. 1993. A geochemical study of metalliferous sediment from the TAG Hydrothermal Mound, 26°08′N, Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 98(B6): 9683–9692. doi: 10.1029/92JB01705
    [27]
    Gibbs A K. 1986. The continental crust: its composition and evolution. Stuart Ross Taylor, Scott M. McLennan. The Journal of Geology, 94(4): 632–633. doi: 10.1086/629067
    [28]
    Glasby G P, Notsu K. 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geology Reviews, 23(3–4): 299–339. doi: 10.1016/j.oregeorev.2003.07.001
    [29]
    Guo Kun, Zhai Shikui, Wang Xiaoyuan, et al. 2018. The dynamics of the southern Okinawa Trough magmatic system: New insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks. Chemical Geology, 497: 146–161. doi: 10.1016/j.chemgeo.2018.09.002
    [30]
    Gurvich E G. 2006. Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep-Sea Hydrothermal Sedimentation. Berlin, Germany: Springer
    [31]
    Halbach P, Nakamura K I, Wahsner M, et al. 1989. Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin. Nature, 338(6215): 496–499. doi: 10.1038/338496a0
    [32]
    Halbach P, Pracejus B, Maerten A. 1993. Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan. Economic Geology, 88(8): 2210–2225. doi: 10.2113/gsecongeo.88.8.2210
    [33]
    Hannington M D, Jonasson I R, Herzig P M, et al. 1995. Physical and chemical processes of seafloor mineralization at mid-ocean ridges. Seafloor Hydrothermal Systems: Physical, 115–157
    [34]
    Herzig P M, Hannington M D, Arribas Jr A. 1998. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems. Mineralium Deposita, 33(3): 226–237. doi: 10.1007/s001260050143
    [35]
    Hu Xinkai, Tang Li, Zhang Shouting, et al. 2019. In situ trace element and sulfur isotope of pyrite constrain ore genesis in the Shapoling molybdenum deposit, East Qinling Orogen, China. Ore Geology Reviews, 105: 123–136. doi: 10.1016/j.oregeorev.2018.12.019
    [36]
    Hu Yongliang, Wang Wei, Zhou Chuanming. 2020. Morphologic and Isotopic Characteristics of Sedimentary Pyrite: A case study from deepwater facies, Ediacaran Lantian Formation in South China. Acta Sedimentologica Sinica, 38(1): 138–149
    [37]
    Ikehata K, Suzuki R, Shimada K, et al. 2015. Mineralogical and geochemical characteristics of hydrothermal minerals collected from hydrothermal vent fields in the southern mariana spreading center. In: Ishibashi J, Okino K, Sunamura M, eds. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo, Japan: Springer, 275–287
    [38]
    Ishibashi J, Ikegami F, Tsuji T, et al. 2015. Hydrothermal activity in the Okinawa Trough back-arc basin: geological background and hydrothermal mineralization. In: Ishibashi J, Okino K, Sunamura M, eds. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo, Japan: Springer, 337–359
    [39]
    Ishibashi J, Sano Y, Wakita H, et al. 1995. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough Back Arc Basin, southwest of Japan. Chemical Geology, 123(1–4): 1–15. doi: 10.1016/0009-2541(95)00051-M
    [40]
    Kawasumi S, Chiba H. 2017. Redox state of seafloor hydrothermal fluids and its effect on sulfide mineralization. Chemical Geology, 451: 25–37. doi: 10.1016/j.chemgeo.2017.01.001
    [41]
    Keith M, Haase K M, Schwarz-Schampera U, et al. 2014. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology, 42(8): 699–702. doi: 10.1130/G35655.1
    [42]
    Kim J, Lee I, Halbach P, et al. 2006. Formation of hydrothermal vents in the North Fiji Basin: Sulfur and lead isotope constraints. Chemical Geology, 233(3–4): 257–275. doi: 10.1016/j.chemgeo.2006.03.011
    [43]
    Kim J, Lee I, Lee K Y. 2004. S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: evaluation of magmatic contribution to hydrothermal system. Journal of Geophysical Research: Solid Earth, 109(B12): B12210. doi: 10.1029/2003JB002912
    [44]
    Kimura M, Uyeda S, Kato Y, et al. 1988. Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan. Tectonophysics, 145(3–4): 319–324. doi: 10.1016/0040-1951(88)90203-X
    [45]
    Kissin S A, Scott S D. 1982. Phase relations involving pyrrhotite below 350 degrees C. Economic Geology, 77(7): 1739–1754. doi: 10.2113/gsecongeo.77.7.1739
    [46]
    Klingelhoefer F, Lee C S, Lin Jingyi, et al. 2009. Structure of the southernmost Okinawa Trough from reflection and wide-angle seismic data. Tectonophysics, 466(3–4): 281–288. doi: 10.1016/j.tecto.2007.11.031
    [47]
    Koglin N, Frimmel H E, Minter W E L, et al. 2010. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Mineralium Deposita, 45(3): 259–280. doi: 10.1007/s00126-009-0272-0
    [48]
    Koski R A, Clague D A, Oudin E. 1984. Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge. Geological Society of America Bulletin, 95(8): 930–945. doi: 10.1130/0016-7606(1984)95<930:MACOMS>2.0.CO;2
    [49]
    Kuhn T, Burger H, Castradori D, et al. 2000. Volcanic and hydrothermal history of ridge segments near the Rodrigues Triple Junction (Central Indian Ocean) deduced from sediment geochemistry. Marine Geology, 169(3–4): 391–409. doi: 10.1016/S0025-3227(00)00080-3
    [50]
    Kusakabe M, Komoda Y, Takano B, et al. 2000. Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. Journal of Volcanology and Geothermal Research, 97(1–4): 287–307. doi: 10.1016/S0377-0273(99)00161-4
    [51]
    LaFlamme C, Hollis S P, Jamieson J W, et al. 2018. Three-dimensional spatially constrained sulfur isotopes highlight processes controlling sulfur cycling in the near surface of the iheya north hydrothermal system, Okinawa Trough. Geochemistry, (8): 2798–2812. doi: 10.1029/2018GC007499
    [52]
    Lee C S, Shor Jr G G, Bibee L D, et al. 1980. Okinawa Trough: origin of a back-arc basin. Marine Geology, 35(1–3): 219–241. doi: 10.1016/0025-3227(80)90032-8
    [53]
    Li Chuanshun, Jiang Bo, Li Anchun, et al. 2009. Sedimentation rates and provenance analysis in the Southwestern Okinawa Trough since the mid-Holocene. Chinese Science Bulletin, 54(7): 1234–1242. doi: 10.1007/s11434-009-0010-0
    [54]
    Li Hongzhong, Zhai Mingguo, Zhang Lianchang, et al. 2014. Distribution, microfabric, and geochemical characteristics of siliceous rocks in central orogenic belt, China: implications for a hydrothermal sedimentation model. The Scientific World Journal, 2014: 780910. doi: 10.1155/2014/780910
    [55]
    Liao Shili, Tao Chunhui, Li Huaiming, et al. 2018. Bulk geochemistry, sulfur isotope characteristics of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geology Reviews, 96: 13–27. doi: 10.1016/j.oregeorev.2018.04.007
    [56]
    Liu Zhongfa, Shao Yongjun, Zhou Haodi, et al. 2018. Major and trace element geochemistry of pyrite and pyrrhotite from stratiform and lamellar orebodies: implications for the ore genesis of the dongguashan copper (gold) deposit, Eastern China. Minerals, 8(9): 380. doi: 10.3390/min8090380
    [57]
    Lüders V, Pracejus B, Halbach P. 2001. Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan). Chemical Geology, 173(1–3): 45–58. doi: 10.1016/S0009-2541(00)00267-9
    [58]
    MacLean L C W, Tyliszczak T, Gilbert P U P A, et al. 2008. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology, 6(5): 471–480. doi: 10.1111/j.1472-4669.2008.00174.x
    [59]
    McDermott J M, Ono S, Tivey M K, et al. 2015. Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes. Geochimica et Cosmochimica Acta, 160: 169–187. doi: 10.1016/j.gca.2015.02.016
    [60]
    Mckibben M A, Eldridge C S. 1990. Radical sulfur isotope zonation of pyrite accompanying boiling and epithermal gold deposition; a SHRIMP study of the Valles Caldera, New Mexico. Economic Geology, 85(8): 1917–1925. doi: 10.2113/gsecongeo.85.8.1917
    [61]
    Meng Xingwei, Li Xiaohu, Chu Fengyou, et al. 2020. Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1-2°S). Ore Geology Reviews, 116: 103209. doi: 10.1016/j.oregeorev.2019.103209
    [62]
    Mills R, Elderfield H, Thomson J. 1993. A dual origin for the hydrothermal component in a metalliferous sediment core from the Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 98(B6): 9671–9681. doi: 10.1029/92JB01414
    [63]
    Moss R, Scott S D. 2001. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the eastern Manus Basin, Papua New Guinea. The Canadian Mineralogist, 39(4): 957–978. doi: 10.2113/ gscanmin.39.4.957
    [64]
    Mozgova N N, Trubkin N V, Borodaev Y S, et al. 2008. Mineralogy of massive sulfides from the Ashadze hydrothermal field, 13°N, Mid-Atlantic Ridge. The Canadian Mineralogist, 46(3): 545–567. doi: 10.3749/canmin.46.3.545
    [65]
    Price B J. 1972. Minor elements in pyrites from the smithers map area, bc and exploration applications of minor element studies [dissertation]. Columbia: University of British Columbia
    [66]
    Pring A, Tarantino S C, Tenailleau C, et al. 2008. The crystal chemistry of Fe-bearing sphalerites: an infrared spectroscopic study. American Mineralogist, 93(4): 591–597. doi: 10.2138/am.2008.2610
    [67]
    Raymond O L. 1996. Pyrite composition and ore genesis in the Prince Lyell copper deposit, Mt Lyell mineral field, western Tasmania, Australia. Ore Geology Reviews, 10(3−6): 231–250. doi: 10.1016/0169-1368(95)00025-9
    [68]
    Rees C E, Jenkins W J, Monster J. 1978. The sulphur isotopic composition of ocean water sulphate. Geochimica et Cosmochimica Acta, 42(4): 377–381. doi: 10.1016/0016-7037(78)90268-5
    [69]
    Rona P A. 1988. Hydrothermal mineralization at oceanic ridges. Canadian Mineralogist, 26(3): 431–465
    [70]
    Rudnicki M D, Elderfield H, Spiro B. 2001. Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures. Geochimica et Cosmochimica Acta, 65(5): 777–789. doi: 10.1016/S0016-7037(00)00579-2
    [71]
    Rushdi A I, Simoneit B R T. 2002. Hydrothermal alteration of organic matter in sediments of the Northeastern Pacific Ocean: Part 1. middle valley, juan de fuca ridge. Applied Geochemistry, 17(11): 1401–1428. doi: 10.1016/S0883-2927(02)00109-9
    [72]
    Sakai H, Des Marais D J, Ueda A, et al. 1984. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochimica et Cosmochimica Acta, 48(12): 2433–2441. doi: 10.1016/0016-7037(84)90295-3
    [73]
    Scott S. 1983. Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineralogical Magazine, 47(345): 427–435. doi: 10.1180/minmag.1983.047.345.03
    [74]
    Scott S D, Barnes H L. 1971. Sphalerite geothermometry and geobarometry. Economic Geology, 66(4): 653–669. doi: 10.2113/gsecongeo.66.4.653
    [75]
    Seal II R R. 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633–677. doi: 10.2138/rmg.2006.61.12
    [76]
    Shang Luning, Zhang Xunhua, Jia Yonggang, et al. 2017. Late Cenozoic evolution of the East China continental margin: insights from seismic, gravity, and magnetic analyses. Tectonophysics, 698: 1–15. doi: 10.1016/j.tecto.2017.01.003
    [77]
    Shinjo R. 1998. Petrochemistry and tectonic significance of the emerged late Cenozoic basalts behind the Okinawa Troughs Ryukyu arc system. Journal of Volcanology and Geothermal Research, 80(1–2): 39–53. doi: 10.1016/S0377-0273(97)00042-5
    [78]
    Shinjo R, Chung S L, Kato Y, et al. 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research: Solid Earth, 104(B5): 10591–10608. doi: 10.1029/1999JB900040
    [79]
    Shinjo R, Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos, 54(3–4): 117–137. doi: 10.1016/S0024-4937(00)00034-7
    [80]
    Shu Yunchao, Nielsen S G, Zeng Zhigang, et al. 2017. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: evidence from thallium isotopes. Geochimica et Cosmochimica Acta, 217: 462–491. doi: 10.1016/j.gca.2017.08.035
    [81]
    Sibuet J C, Hsu S K, Shyu C T, et al. 1995. Structural and kinematic evolutions of the Okinawa Trough backarc basin. In: Taylor B, ed. Backarc Basins. Boston, MA, USA: Springer, 343–379
    [82]
    Sibuet J C, Letouzey J, Barbier F, et al. 1987. Back arc extension in the Okinawa Trough. Journal of Geophysical Research: Solid Earth, 92(B13): 14041–14063. doi: 10.1029/JB092iB13p14041
    [83]
    Suzuki R, Ishibashi J I, Nakaseama M, et al. 2008. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the yonaguni knoll iv hydrothermal field in the okinawa trough back-arc basin. Resource Geology, 58(3): 267–288. doi: 10.1111/j.1751-3928.2008.00061.x
    [84]
    Tivey M K, Humphris S E, Thompson G, et al. 1995. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. Journal of Geophysical Research:Solid Earth, 100(B7): 12527–12555. doi: 10.1029/95JB00610
    [85]
    Ueda A, Sakai H. 1984. Sulfur isotope study of Quaternary volcanic rocks from the Japanese Islands Arc. Geochimica et Cosmochimica Acta, 48(9): 1837–1848. doi: 10.1016/0016-7037(84)90037-1
    [86]
    Ueno H, Hamasaki H, Murakawa Y, et al. 2003. Ore and gangue minerals of sulfide chimneys from the North Knoll, Iheya Ridge, Okinawa Trough, Japan. JAMSTEC Journal of Deep Sea Research, 22: 49–62
    [87]
    Walker S L, Baker E T. 1988. Particle-size distributions within hydrothermal plumes over the Juan de Fuca Ridge. Marine Geology, 78(3–4): 217–226. doi: 10.1016/0025-3227(88)90110-7
    [88]
    Wang Hao, Chu Fengyou, Li Xiaohu, et al. 2020. Mineralogy, geochemistry, and Sr–Pb and in situ S isotopic compositions of hydrothermal precipitates from the Tangyin hydrothermal field, southern Okinawa Trough: evaluation of the contribution of magmatic fluids and sediments to hydrothermal systems. Ore Geology Reviews, 126: 103742. doi: 10.1016/j.oregeorev.2020.103742
    [89]
    Wang Long, Yu Min, Liu Yan, et al. 2018. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough. Journal of Marine Systems, 180: 162–172. doi: 10.1016/j.jmarsys.2016.11.012
    [90]
    Woodhead J D, Harmon R S, Fraser D G. 1987. O, S, Sr, and Pb isotope variations in volcanic rocks from the Northern Mariana Islands: implications for crustal recycling in intra-oceanic arcs. Earth and Planetary Science Letters, 83(1–4): 39–52. doi: 10.1016/0012-821X(87)90049-5
    [91]
    Yang Baoju, Liu Jihua, Shi Xuefa, et al. 2020. Mineralogy and sulfur isotope characteristics of metalliferous sediments from the Tangyin hydrothermal field in the southern Okinawa Trough. Ore Geology Reviews, 120: 103464. doi: 10.1016/j.oregeorev.2020.103464
    [92]
    Yang Baoju, Wu Yonghua, Liu Jihua, et al. 2018. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity. Marine Geology & Quaternary Geology, 38(2): 25–37
    [93]
    Yu Zenghui, Li Huaiming, Li Mengxing, et al. 2018. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean. Journal of Marine Systems, 180: 173–181. doi: 10.1016/j.jmarsys.2016.11.013
    [94]
    Zeng Zhigang, Chen Shuai, Ma Yao, et al. 2017a. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough. Ore Geology Reviews, 87: 172–191. doi: 10.1016/j.oregeorev.2016.09.015
    [95]
    Zeng Zhigang, Li Jun, Jiang Fuqing, et al. 2002. Sulfur isotopic composition of seafloor hydrothermal sediment from the Jade hydrothermal field in the central Okinawa Trough and its geological significance. Haiyang Xuebao, 21(3): 395–405
    [96]
    Zeng Zhigang, Ma Yao, Chen Shuai, et al. 2017b. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation. Ore Geology Reviews, 87: 155–171. doi: 10.1016/j.oregeorev.2016.10.014
    [97]
    Zhai Shikui, Yu Zenghui, Du Tongjun. 2007. Elemental geochemical records of seafloor hydrothermal activities in the sediments from the Okinawa Trough. Acta Oceanologica Sinica, 26(4): 53–62. doi: 10.1109/UT.2007.370822
    [98]
    Zhang Yu, Shao Yongjun, Chen Huayong, et al. 2017. A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit, Eastern China: evidence from sulfide geochemistry and sulfur isotopes. Ore Geology Reviews, 88: 534–549. doi: 10.1016/j.oregeorev.2016.08.002
    [99]
    Zhang Xia, Zhai Shikui, Yu Zenghui, et al. 2018. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough. Journal of Marine Systems, 180: 124–131. doi: 10.1016/j.jmarsys.2016.11.007
    [100]
    Zhang Xia, Zhai Shikui, Yu Zenghui, et al. 2019. Zinc and lead isotope variation in hydrothermal deposits from the Okinawa Trough. Ore Geology Reviews, 111: 102944. doi: 10.1016/j.oregeorev.2019.102944
    [101]
    Zhao Yiyang. 1983. Some geochemical patterns of shelf sediments of the China Seas. Chinese Journal of Geology, 18(4): 307–314
    [102]
    Zhao Yiyang, Zhai Shikui, Li Yongzhi, et al. 1997. New records of submarine hydrothermal activity in middle part of the Okinawa Trough. Chinese Science Bulletin, 42(7): 574–577. doi: 10.1007/BF03182621
  • Supplementary information-yangyamin.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (1085) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return