Citation: | Zheqi Shen, Youmin Tang. A two-stage inflation method in parameter estimation to compensate for constant parameter evolution in Community Earth System Model[J]. Acta Oceanologica Sinica, 2022, 41(2): 91-102. doi: 10.1007/s13131-021-1856-5 |
[1] |
Aksoy A, Zhang Fuqing, Nielsen-Gammon J W. 2006. Ensemble-based simultaneous state and parameter estimation with MM5. Geophysical Research Letters, 33(12): L12801. doi: 10.1029/2006GL026186
|
[2] |
Anderson J L. 2001. An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 129(12): 2884–2903. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
|
[3] |
Anderson J L. 2009. Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus A, 61(1): 72–83. doi: 10.1111/j.1600-0870.2008.00361.x
|
[4] |
Annan J D, Hargreaves J C. 2004. Efficient parameter estimation for a highly chaotic system. Tellus A, 56(5): 520–526. doi: 10.3402/tellusa.v56i5.14438
|
[5] |
Annan J D, Hargreaves J C, Edwards N R, et al. 2005. Parameter estimation in an intermediate complexity Earth system model using an ensemble Kalman filter. Ocean Modelling, 8(1–2): 135–154
|
[6] |
Banks H T. 1992. Computational issues in parameter estimation and feedback control problems for partial differential equation systems. Physica D: Nonlinear Phenomena, 60(1–4): 226–238.
|
[7] |
Evensen G. 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynamics, 53(4): 343–367. doi: 10.1007/s10236-003-0036-9
|
[8] |
Evensen G, Dee D P, Schröter J. 1998. Parameter estimation in dynamical models. In: Chassignet E P, Verron J, eds. Ocean Modeling and Parameterization. Dordrech, the Netherlands: Springer, 373–398
|
[9] |
Ffield A, Gordon A L. 1992. Vertical mixing in the Indonesian thermocline. Journal of Physical Oceanography, 22(2): 184–195. doi: 10.1175/1520-0485(1992)022<0184:VMITIT>2.0.CO;2
|
[10] |
Furue R, Jia Yanli, McCreary J P, et al. 2015. Impacts of regional mixing on the temperature structure of the equatorial Pacific Ocean. Part 1: vertically uniform vertical diffusion. Ocean Modelling, 91: 91–111. doi: 10.1016/j.ocemod.2014.10.002
|
[11] |
Gaspari G, Cohn S E. 1999. Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society, 125(554): 723–757. doi: 10.1002/qj.49712555417
|
[12] |
Good S A, Martin M J, Rayner N A. 2013. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118(12): 6704–6716. doi: 10.1002/2013JC009067
|
[13] |
Gordon N J, Salmond D J, Smith A F M. 1993. Novel approach to non- linear/non-Gaussian Bayesian state estimation. IEE Proceedings F: Radar and Signal Processing, 140(2): 107–113. doi: 10.1049/ip-f-2.1993.0015
|
[14] |
Gregg M C, Sanford T B, Winkel D P. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422(6931): 513–515. doi: 10.1038/nature01507
|
[15] |
Jochum M. 2009. Impact of latitudinal variations in vertical diffusivity on climate simulations. Journal of Geophysical Research: Oceans, 114(C1): C01010
|
[16] |
Karspeck A R, Danabasoglu G, Anderson J, et al. 2018. A global coupled ensemble data assimilation system using the Community Earth System Model and the Data Assimilation Research Testbed. Quarterly Journal of the Royal Meteorological Society, 144(717): 2404–2430. doi: 10.1002/qj.3308
|
[17] |
Kivman G A. 2003. Sequential parameter estimation for stochastic systems. Nonlinear Processes in Geophysics, 10(3): 253–259. doi: 10.5194/npg-10-253-2003
|
[18] |
Koyama H, Watanabe M. 2010. Reducing Forecast Errors Due to Model Imperfections Using Ensemble Kalman Filtering. Monthly Weather Review, 138(8): 3316–3332. doi: 10.1175/2010MWR3067.1
|
[19] |
Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4): 363–403. doi: 10.1029/94RG01872
|
[20] |
Liu Yun, Liu Zhengyu, Zhang Shaoqing, et al. 2014a. Ensemble-based parameter estimation in a coupled GCM using the adaptive spatial average method. Journal of Climate, 27(11): 4002–4014. doi: 10.1175/JCLI-D-13-00091.1
|
[21] |
Liu Yun, Liu Zhengyu, Zhang Shaoqing, et al. 2014b. Ensemble-based parameter estimation in a coupled general circulation model. Journal of Climate, 27(18): 7151–7162. doi: 10.1175/JCLI-D-13-00406.1
|
[22] |
Liu J, West M. 2001. Combined parameter and state estimation in simulation-based filtering. In: Sequential Monte Carlo Methods in Practice. New York, NY, USA: Springer, 197–223
|
[23] |
Ruiz J J, Pulido M, Miyoshi T. 2013. Estimating model parameters with ensemble-based data assimilation: a review. Journal of the Meteorological Society of Japan, 91(2): 79–99. doi: 10.2151/jmsj.2013-201
|
[24] |
Santitissadeekorn N, Jones C. 2015. Two-stage filtering for joint state-parameter estimation. Monthly Weather Review, 143(6): 2028–2042. doi: 10.1175/MWR-D-14-00176.1
|
[25] |
Smith R, Jones P W, Briegleb B, et al. 2010. The Parallel Ocean Program (POP) reference manual, ocean component of the community climate system model (CCSM). Technical Report LAUR-10-01853. Boulder, CO, USA: National Centre for Atmosphere Research
|
[26] |
Tong Mingjing, Xue Ming. 2008. Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: sensitivity analysis and parameter identifiability. Monthly Weather Review, 136(5): 1630–1648. doi: 10.1175/2007MWR2070.1
|
[27] |
Wu Xinrong, Han Guijun, Zhang Shaoqing, et al. 2016. A study of the impact of parameter optimization on ENSO predictability with an intermediate coupled model. Climate Dynamics, 46(3–4): 711–727
|
[28] |
Wu Xinrong, Zhang Shaoqing, Liu Zhengyu, et al. 2013. A study of impact of the geographic dependence of observing system on parameter estimation with an intermediate coupled model. Climate Dynamics, 40(7): 1789–1798
|
[29] |
Zhang Shaoqing, Liu Zhengyu, Rosati A, et al. 2012. A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model. Tellus A, 64(1): 10963. doi: 10.3402/tellusa.v64i0.10963
|
[30] |
Zhang Shaoqing, Liu Zhengyu, Zhang Xuefeng, et al. 2020. Coupled data assimilation and parameter estimation in coupled ocean–atmosphere models: a review. Climate Dynamics, 54(11–12): 5127–5144
|
[31] |
Zhang Xuefeng, Zhang Shaoqing, Liu Zhengyu, et al. 2016. Correction of biased climate simulated by biased physics through parameter estimation in an intermediate coupled model. Climate Dynamics, 47(5–6): 1899–1912
|
[32] |
Zhao Yuchu, Liu Zhengyu, Zheng Fei, et al. 2019. Parameter optimization for real-world ENSO forecast in an intermediate coupled model. Monthly Weather Review, 147(5): 1429–1445. doi: 10.1175/MWR-D-18-0199.1
|
[33] |
Zhu Yuchao, Zhang Ronghua. 2018. An Argo-derived background diffusivity parameterization for improved ocean simulations in the Tropical Pacific. Geophysical Research Letters, 45(3): 1509–1517. doi: 10.1002/2017GL076269
|