Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Yubin Feng, Dong Li, Jun Zhao, Zhengbing Han, Jianming Pan, Gaojing Fan, Haisheng Zhang, Ji Hu, Haifeng Zhang, Jiaqi Wu, Qiuhong Zhu. Environmental drivers of phytoplankton crops and taxonomic composition in northeastern Antarctic Peninsula adjacent sea area[J]. Acta Oceanologica Sinica, 2022, 41(1): 99-117. doi: 10.1007/s13131-021-1865-4
Citation: Yubin Feng, Dong Li, Jun Zhao, Zhengbing Han, Jianming Pan, Gaojing Fan, Haisheng Zhang, Ji Hu, Haifeng Zhang, Jiaqi Wu, Qiuhong Zhu. Environmental drivers of phytoplankton crops and taxonomic composition in northeastern Antarctic Peninsula adjacent sea area[J]. Acta Oceanologica Sinica, 2022, 41(1): 99-117. doi: 10.1007/s13131-021-1865-4

Environmental drivers of phytoplankton crops and taxonomic composition in northeastern Antarctic Peninsula adjacent sea area

doi: 10.1007/s13131-021-1865-4
Funds:  The program of Impact and Response of Antarctic Seas to Climate Change under contract No. IRASCC2020-2022 (01-01-02 and 02-02); the National Natural Science Foundation of China under contract Nos 41976228, 41976227 and 41506223; the Scientific Research Fund of the Second Institute of Oceanography under contract Nos JG1805, JG2011 and JG2013.
More Information
  • Corresponding author: E-mail: lidong@sio.org.cn
  • Received Date: 2021-04-01
  • Accepted Date: 2021-06-07
  • Available Online: 2021-12-21
  • Publish Date: 2022-01-10
  • The ecosystem of the sea region adjacent to the Antarctic Peninsula is undergoing remarkable physical and biological changes, in the context of global warming. However, understanding of the dynamics of phytoplankton taxonomic composition in this marginal ice zone remains unclear. In this study, seawater samples collected from 36 stations in the northeastern Antarctic Peninsula were analyzed for nutrients and phytoplankton pigments. Combining with CHEMTAX analysis, remote sensing data, and physicochemical measurements, we investigated the relationships between phytoplankton crops, taxonomic composition, and marine environmental drivers. Integrated chlorophyll a (Chl a) concentrations (200 m) varied from 8.9 mg/m2 to 64.2 mg/m2, with an average of (23.2±12.0) mg/m2 and higher phytoplankton biomass concentrated in the coastal region of South Orkney Island and South Shetland Island. Diatoms were the dominant functional group (63%±21%). Higher proportions of diatoms were associated with higher Chl a (r=0.40, p<0.01), stable water columns (r=0.20, p<0.01), higher Si/P ratios (r=0.34, p<0.01), higher photosynthetically active radiation intensity (r=0.64, p<0.01), and higher sea ice melt water contributions (MWC, r=0.20, p<0.01). Conversely, Phaeocystis antarctica contributed a smaller overall proportion (31%±18%) and was more concentrated in the offshore water masses (e.g., Philip Ridge and South Scotia Ridge) with lower light levels (r=−0.58, p<0.01), deeper mixed layer depths (r=0.17, p<0.05), higher nutrient concentrations (e.g., N, P, and Si, r>0.35, p<0.01), and lower MWC (r=−0.20, p<0.01). In comparison, the total contribution from green flagellates (4%±5%), cryptophyta (1%±3%), dinoflagellates (1%±4%), and cyanobacteria (1% ± 5%) was only 6%. In offshore regions with well-mixed water, less varied taxonomic composition and lower crops with a higher proportion of nanophytoplankton were observed. In contrast, significantly decreasing crops below the mixed layer depth was observed in water columns with strong stratification, where the dominant phytoplankter changed from diatoms to P. antarctica. These findings have important implications for better understanding the future dynamics of marine ecosystems in the sea area adjacent to the Antarctic Peninsula.
  • loading
  • [1]
    Ackley S F, Buck K R, Taguchi S. 1979. Standing crop of algae in the sea ice of the Weddell Sea region. Deep-Sea Research Part A: Oceanographic Research Papers, 26(3): 269–281. doi: 10.1016/0198-0149(79)90024-4
    [2]
    Alderkamp A C, de Baar H J W, Visser R J W, et al. 2010. Can photoinhibition control phytoplankton abundance in deeply mixed water columns of the Southern Ocean?. Limnology and Oceanography, 55(3): 1248–1264, doi: 10.4319/lo.2010.55.3.1248
    [3]
    Ardelan M V, Holm-Hansen O, Hewes C D, et al. 2010. Natural iron enrichment around the Antarctic Peninsula in the Southern Ocean. Biogeosciences, 7(1): 11–25. doi: 10.5194/bg-7-11-2010
    [4]
    Arrigo K R, Robinson D H, Worthen D L, et al. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science, 283(5400): 365–367. doi: 10.1126/science.283.5400.365
    [5]
    Barlett E M R, Tosonotto G V, Piola A R, et al. 2018. On the temporal variability of intermediate and deep waters in the Western Basin of the Bransfield Strait. Deep-Sea Research Part II: Topical Studies in Oceanography, 149: 31–46. doi: 10.1016/j.dsr2.2017.12.010
    [6]
    Barlow R, Kyewalyanga M, Sessions H, et al. 2008. Phytoplankton pigments, functional types, and absorption properties in the Delagoa and Natal Bights of the Agulhas ecosystem. Estuarine, Coastal and Shelf Science, 80(2): 201–211,
    [7]
    Belcher A, Tarling G A, Manno C, et al. 2017. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biology, 40(10): 2001–2013. doi: 10.1007/s00300-017-2118-z
    [8]
    Cadée G C, González H, Schnack-Schiel S B. 1992. Krill diet affects faecal string settling. Polar Biology, 12(1): 75–80. doi: 10.1007/BF00239967
    [9]
    Cai Yuming, Ning Xiuren, Zhu Genghai, et al. 2003. Size fractionated biomass and productivity of phytoplankton and new production in the Prydz Bay and the adjacent Indian sector of the Southern Ocean during the austral summer of 1998/1999. Haiyang Xuebao, 27(4): 135–147
    [10]
    Carvalho F, Kohut J, Oliver M J, et al. 2016. Mixing and phytoplankton dynamics in a submarine canyon in the West Antarctic Peninsula. Journal of Geophysical Research: Oceans, 121(7): 5069–5083. doi: 10.1002/2016jc011650
    [11]
    Cheah W, Soppa M A, Wiegmann S, et al. 2017. Importance of deep mixing and silicic acid in regulating phytoplankton biomass and community in the iron-limited Antarctic Polar Front region in summer. Deep-Sea Research Part II: Topical Studies in Oceanography, 138: 74–85. doi: 10.1016/j.dsr2.2016.05.019
    [12]
    Clarke A, Murphy E J, Meredith M P, et al. 2007. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philosophical Transactions of the Royal Society B, 362(1477): 149–166. doi: 10.1098/rstb.2006.1958
    [13]
    Clem K R, Fogt R L, Turner J, et al. 2020. Record warming at the South Pole during the past three decades. Nature Climate Change, 10(8): 762–770. doi: 10.1038/s41558-020-0815-z
    [14]
    Cook A J, Holland P R, Meredith M P, et al. 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353(6296): 283–286. doi: 10.1126/science.aae0017
    [15]
    Costa R R, Mendes C R B, Tavano V M, et al. 2020. Dynamics of an intense diatom bloom in the northern Antarctic Peninsula, February 2016. Limnology and Oceanography, 65(9): 2056–2075. doi: 10.1002/lno.11437
    [16]
    Deppeler S L, Davidson A T. 2017. Southern ocean phytoplankton in a changing climate. Frontiers in Marine Science, 4: 40. doi: 10.3389/fmars.2017.00040
    [17]
    Dotto T S, Kerr R, Mata M M, et al. 2016. Multidecadal freshening and lightening in the deep waters of the Bransfield Strait, Antarctica. Journal of Geophysical Research: Oceans, 121(6): 3741–3756. doi: 10.1002/2015jc011228
    [18]
    Ducklow H W, Schofield O, Vernet M, et al. 2012. Multiscale control of bacterial production by phytoplankton dynamics and sea ice along the western Antarctic Peninsula: A regional and decadal investigation. Journal of Marine Systems, 98–99: 26–39,
    [19]
    Fahrbach E, Rohardt G, Schröder M, et al. 1994. Transport and structure of the Weddell Gyre. Annales Geophysicae, 12(9): 840–855. doi: 10.1007/s00585-994-0840-7
    [20]
    Forcada J, Trathan P N, Boveng P L, et al. 2012. Responses of Antarctic pack-ice seals to environmental change and increasing krill fishing. Biological Conservation, 149(1): 40–50. doi: 10.1016/j.biocon.2012.02.002
    [21]
    García-Muñoz C, Lubían L M, García C M, et al. 2013. A mesoscale study of phytoplankton assemblages around the South Shetland Islands (Antarctica). Polar Biology, 36(8): 1107–1123. doi: 10.1007/s00300-013-1333-5
    [22]
    Garibotti I A, Vernet M, Kozlowski W A, et al. 2003. Composition and biomass of phytoplankton assemblages in coastal Antarctic waters: a comparison of chemotaxonomic and microscopic analyses. Marine Ecology Progress Series, 247: 27–42. doi: 10.3354/meps247027
    [23]
    Garibotti I A, Vernet M, Smith R C, et al. 2005. Interannual variability in the distribution of the phytoplankton standing stock across the seasonal sea-ice zone west of the Antarctic Peninsula. Journal of Plankton Research, 27(8): 825–843. doi: 10.1093/plankt/fbi056
    [24]
    Gibb S, Cummings D, Irigoien X, et al. 2001. Phytoplankton pigment chemotaxonomy of the northeastern Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 48(4–5): 795–823,
    [25]
    Gibberd M J, Kean E, Barlow R, et al. 2013. Phytoplankton chemotaxonomy in the Atlantic sector of the Southern Ocean during late summer 2009. Deep-Sea Research Part I: Oceanographic Research Papers, 78: 70–78. doi: 10.1016/j.dsr.2013.04.007
    [26]
    Gonçalves-Araujo R, de Souza M S, Tavano V M, et al. 2015. Influence of oceanographic features on spatial and interannual variability of phytoplankton in the Bransfield Strait, Antarctica. Journal of Marine Systems, 142: 1–15. doi: 10.1016/j.jmarsys.2014.09.007
    [27]
    Grasshoff K, Kremling K, Ehrhardt M. 1999. Methods of Seawater Analysis. 3rd ed. New York, NY, USA: Wiley-VCH,
    [28]
    Hassler C S, Ridgway K R, Bowie A R, et al. 2014. Primary productivity induced by iron and nitrogen in the Tasman Sea: an overview of the PINTS expedition. Marine and Freshwater Research, 65(6): 517–537. doi: 10.1071/MF13137
    [29]
    Hewes C D, Reiss C S, Kahru M, et al. 2008. Control of phytoplankton biomass by dilution and mixed layer depth in the western Weddell-Scotia Confluence. Marine Ecology Progress Series, 366: 15–29. doi: 10.3354/meps07515
    [30]
    Heywood K J, Garabato A C N, Stevens D P, et al. 2004. On the fate of the Antarctic slope front and the origin of the Weddell front. Journal of Geophysical Research: Oceans, 109(C6): C06021. doi: 10.1029/2003jc002053
    [31]
    Heywood R B, Priddle J. 1987. Retention of phytoplankton by an eddy. Continental Shelf Research, 7(8): 937–955. doi: 10.1016/0278-4343(87)90007-0
    [32]
    Hopkinson B M, Mitchell B G, Reynolds R A, et al. 2007. Iron limitation across chlorophyll gradients in the southern Drake Passage: phytoplankton responses to iron addition and photosynthetic indicators of iron stress. Limnology and Oceanography, 52(6): 2540–2554. doi: 10.4319/lo.2007.52.6.2540
    [33]
    Hoppe C J M, Klaas C, Ossebaar S, et al. 2017. Controls of primary production in two phytoplankton blooms in the Antarctic Circumpolar Current. Deep-Sea Research Part II: Topical Studies in Oceanography, 138: 63–73. doi: 10.1016/j.dsr2.2015.10.005
    [34]
    Jeffrey S W, Mantoura R F, Wright S W. 1997. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Paris, France: UNESCO,
    [35]
    Joy-Warren H L, Van Dijken G L, Alderkamp A C, et al. 2019. Light is the primary driver of early season phytoplankton production along the western Antarctic Peninsula. Journal of Geophysical Research: Oceans, 124(11): 7375–7399. doi: 10.1029/2019jc015295
    [36]
    Justić D, Rabalais N N, Turner R E. 1995. Stoichiometric nutrient balance and origin of coastal eutrophication. Marine Pollution Bulletin, 30(1): 41–46. doi: 10.1016/0025-326x(94)00105-i
    [37]
    Kerr R, Goyet C, da Cunha L C, et al. 2018a. Carbonate system properties in the Gerlache Strait, northern Antarctic Peninsula (February 2015): II. Anthropogenic CO2 and seawater acidification. Deep-Sea Research Part II: Topical Studies in Oceanography, 149: 182–192. doi: 10.1016/j.dsr2.2017.07.007
    [38]
    Kerr R, Mata M M, Mendes C R B, et al. 2018b. Northern Antarctic Peninsula: a marine climate hotspot of rapid changes on ecosystems and ocean dynamics. Deep-Sea Research Part II: Topical Studies in Oceanography, 149: 4–9. doi: 10.1016/j.dsr2.2018.05.006
    [39]
    Kozlowski W A, Deutschman D, Garibotti I, et al. 2011. An evaluation of the application of CHEMTAX to Antarctic coastal pigment data. Deep-Sea Research Part I: Oceanographic Research Papers, 58(4): 350–364. doi: 10.1016/j.dsr.2011.01.008
    [40]
    Landschützer P, Gruber N, Bakker D C E. 2016. Decadal variations and trends of the global ocean carbon sink. Global Biogeochemical Cycles, 30(10): 1396–1417. doi: 10.1002/2015gb005359
    [41]
    Lee Y, Yang E J, Park J, et al. 2016. Physical-biological coupling in the Amundsen Sea, Antarctica: influence of physical factors on phytoplankton community structure and biomass. Deep-Sea Research Part I: Oceanographic Research Papers, 117: 51–60. doi: 10.1016/j.dsr.2016.10.001
    [42]
    Loeb V, Hofmann E E, Klinck J M, et al. 2010. Hydrographic control of the marine ecosystem in the South Shetland-Elephant Island and Bransfield Strait region. Deep-Sea Research Part II: Topical Studies in Oceanography, 57(7–8): 519–542,
    [43]
    Lovenduski N S, Gruber N. 2005. Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophysical Research Letters, 32(11): L11603. doi: 10.1029/2005gl022727
    [44]
    Martinson D G, Stammerjohn S E, Iannuzzi R A, et al. 2008. Western Antarctic Peninsula physical oceanography and spatio–temporal variability. Deep-Sea Research Part II: Topical Studies in Oceanography, 55(18–19): 1964–1987,
    [45]
    McGillicuddy D J Jr, Sedwick P N, Dinniman M S, et al. 2015. Iron supply and demand in an Antarctic shelf ecosystem. Geophysical Research Letters, 42(19): 8088–8097. doi: 10.1002/2015GL065727
    [46]
    Mendes C R B, de Souza M S, Garcia V M T, et al. 2012. Dynamics of phytoplankton communities during late summer around the tip of the Antarctic Peninsula. Deep-Sea Research Part I: Oceanographic Research Papers, 65: 1–14. doi: 10.1016/j.dsr.2012.03.002
    [47]
    Mendes C R B, Tavano V M, Dotto T S, et al. 2018a. New insights on the dominance of cryptophytes in Antarctic coastal waters: a case study in Gerlache Strait. Deep-Sea Research Part II: Topical Studies in Oceanography, 149: 161–170. doi: 10.1016/j.dsr2.2017.02.010
    [48]
    Mendes C R B, Tavano V M, Kerr R, et al. 2018b. Impact of sea ice on the structure of phytoplankton communities in the northern Antarctic Peninsula. Deep-Sea Research Part II: Topical Studies in Oceanography, 149: 111–123. doi: 10.1016/j.dsr2.2017.12.003
    [49]
    Mendes C R B, Tavano V M, Leal M C, et al. 2013. Shifts in the dominance between diatoms and cryptophytes during three late summers in the Bransfield Strait (Antarctic Peninsula). Polar Biology, 36(4): 537–547. doi: 10.1007/s00300-012-1282-4
    [50]
    Moline M A, Claustre H, Frazer T K, et al. 2004. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Global Change Biology, 10(12): 1973–1980. doi: 10.1111/j.1365-2486.2004.00825.x
    [51]
    Montes-Hugo M, Doney S C, Ducklow H W, et al. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science, 323(5920): 1470–1473. doi: 10.1126/science.1164533
    [52]
    Morel A, Huot Y, Gentili B, et al. 2007. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sensing of Environment, 111(1): 69–88. doi: 10.1016/j.rse.2007.03.012
    [53]
    Murphy E J, Watkins J L, Trathan P N, et al. 2007. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philosophical Transactions of the Royal Society B, 362(1477): 113–148. doi: 10.1098/rstb.2006.1957
    [54]
    Nunes S, Latasa M, Delgado M, et al. 2019. Phytoplankton community structure in contrasting ecosystems of the Southern Ocean: South Georgia, South Orkneys and western Antarctic Peninsula. Deep-Sea Research Part I: Oceanographic Research Papers, 151: 103059. doi: 10.1016/j.dsr.2019.06.005
    [55]
    Oksanen J, Blanchet F G, Kindt R, et al. 2013. Package ‘vegan’. Community Ecology Package, 2(9): 1–295
    [56]
    Pallin L J, Baker C S, Steel D, et al. 2018. High pregnancy rates in humpback whales (Megaptera novaeangliae) around the western Antarctic Peninsula, evidence of a rapidly growing population. Royal Society Open Science, 5(5): 180017. doi: 10.1098/rsos.180017
    [57]
    Park J, Oh I S, Kim H C, et al. 2010. Variability of SeaWiFs chlorophyll-a in the southwest Atlantic sector of the Southern Ocean: strong topographic effects and weak seasonality. Deep-Sea Research Part I: Oceanographic Research Papers, 57(4): 604–620. doi: 10.1016/j.dsr.2010.01.004
    [58]
    Peck L S, Barnes D K A, Cook A J, et al. 2010. Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Global Change Biology, 16(9): 2614–2623. doi: 10.1111/j.1365-2486.2009.02071.x
    [59]
    Peeken I. 1997. Photosynthetic pigment fingerprints as indicators of phytoplankton biomass and development in different water masses of the Southern Ocean during austral spring. Deep-Sea Research Part II: Topical Studies in Oceanography, 44(1–2): 261–282,
    [60]
    Petrou K, Kranz S A, Trimborn S, et al. 2016. Southern Ocean phytoplankton physiology in a changing climate. Journal of Plant Physiology, 203: 135–150. doi: 10.1016/j.jplph.2016.05.004
    [61]
    Reiss C S, Hewes C D, Holm-Hansen O. 2009. Influence of atmospheric teleconnections and Upper Circumpolar Deep Water on phytoplankton biomass around Elephant Island, Antarctica. Marine Ecology Progress Series, 377: 51–62. doi: 10.3354/meps07840
    [62]
    Rodriguez F, Varela M, Zapata M. 2002. Phytoplankton assemblages in the Gerlache and Bransfield Straits (Antarctic Peninsula) determined by light microscopy and CHEMTAX analysis of HPLC pigment data. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(4–5): 723–747,
    [63]
    Rozema P D, Venables H J, Van de Poll W H, et al. 2017. Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification. Limnology and Oceanography, 62(1): 235–252. doi: 10.1002/lno.10391
    [64]
    Russo A D P G, de Souza M S, Mendes C R B, et al. 2018. Spatial variability of photophysiology and primary production rates of the phytoplankton communities across the western Antarctic Peninsula in late summer 2013. Deep-Sea Research Part II: Topical Studies in Oceanography, 149: 99–1. doi: 10.1016/j.dsr2.2017.09.021
    [65]
    Sabine C L, Feely R A, Gruber N, et al. 2004. The oceanic sink for anthropogenic CO2. Science, 305(5682): 367–371. doi: 10.1126/science.1097403
    [66]
    Sanchez N, Reiss C S, Holm-Hansen O, et al. 2019. Weddell-Scotia confluence effect on the iron distribution in waters surrounding the South Shetland (Antarctic Peninsula) and South Orkney (Scotia Sea) islands during the austral summer in 2007 and 2008. Frontiers in Marine Science, 6: 771. doi: 10.3389/fmars.2019.00771
    [67]
    Sangrà P, García-Muñoz C, García C M, et al. 2014. Coupling between upper ocean layer variability and size-fractionated phytoplankton in a non-nutrient-limited environment. Marine Ecology Progress Series, 499: 35–46. doi: 10.3354/meps10668
    [68]
    Sangrà P, Gordo C, Hernández-Arencibia M, et al. 2011. The Bransfield current system. Deep-Sea Research Part I: Oceanographic Research Papers, 58(4): 390–402. doi: 10.1016/j.dsr.2011.01.011
    [69]
    Schloss I R, Abele D, Moreau S, et al. 2012. Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica). Journal of Marine Systems, 92(1): 53–66. doi: 10.1016/j.jmarsys.2011.10.006
    [70]
    Secchi E R, Dalla-Rosa L, Kinas P G, et al. 2011. Encounter rates and abundance of humpback whales (Megaptera novaeangliae) in Gerlache and Bransfield Straits, Antarctic Peninsula. Journal of Cetacean Research and Management, 3: 107–111. doi: 10.47536/jcrm.vi.312
    [71]
    Seyboth E, Botta S, Mendes C R B, et al. 2018. Isotopic evidence of the effect of warming on the northern Antarctic Peninsula ecosystem. Deep-Sea Research Part II: Topical Studies in Oceanography, 149: 218–228. doi: 10.1016/j.dsr2.2017.12.020
    [72]
    Shepherd A, Ivins E, Rignot E, et al. 2018. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558(7709): 219–222. doi: 10.1038/s41586-018-0179-y
    [73]
    Stammerjohn S E, Martinson D G, Smith R C, et al. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research: Oceans, 113(C3): C03S90. doi: 10.1029/2007jc004269
    [74]
    Steig E J, Schneider D P, Rutherford S D, et al. 2009. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457(7228): 459–462. doi: 10.1038/nature07669
    [75]
    Takahashi T, Sutherland S C, Sweeney C, et al. 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(9–10): 1601–1622,
    [76]
    Thompson A F, Heywood K J, Thorpe S E, et al. 2009. Surface circulation at the tip of the Antarctic peninsula from drifters. Journal of Physical Oceanography, 39(1): 3–26. doi: 10.1175/2008jpo3995.1
    [77]
    Tréguer P, Bowler C, Moriceau B, et al. 2018. Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience, 11(1): 27–37. doi: 10.1038/s41561-017-0028-x
    [78]
    Turner J, Phillips T, Marshall G J, et al. 2017. Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophysical Research Letters, 44(13): 6868–6875. doi: 10.1002/2017gl073656
    [79]
    Van de Poll W H, Lagunas M, de Vries T, et al. 2011. Non-photochemical quenching of chlorophyll fluorescence and xanthophyll cycle responses after excess PAR and UVR in Chaetoceros brevis, Phaeocystis antarctica and coastal Antarctic phytoplankton. Marine Ecology Progress Series, 426: 119–131. doi: 10.3354/meps09000
    [80]
    Villafañe V E, Janknegt P J, de Graaff M, et al. 2008. UVR-induced photoinhibition of summer marine phytoplankton communities from Patagonia. Marine Biology, 154(6): 1021–1029. doi: 10.1007/s00227-008-0993-0
    [81]
    Von Gyldenfeldt A B, Fahrbach E, Garcı́a M A, et al. 2002. Flow variability at the tip of the Antarctic Peninsula. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(21): 4743–4766. doi: 10.1016/S0967-0645(02)00157-1
    [82]
    Wang Bo, Chen Min, Chen Feng, et al. 2020. Meteoric water promotes phytoplankton carbon fixation and iron uptake off the eastern tip of the Antarctic Peninsula (eAP). Progress in Oceanography, 185: 102347. doi: 10.1016/j.pocean.2020.102347
    [83]
    Westwood K J, Griffiths F B, Meiners K M, et al. 2010. Primary productivity off the Antarctic coast from 30°–80°E; BROKE-West survey, 2006. Deep-Sea Research Part II: Topical Studies in Oceanography, 57(9–10): 794–814,
    [84]
    Wojtasiewicz B, Trull T W, Clementson L, et al. 2019. Factors controlling the lack of phytoplankton biomass in naturally iron fertilized waters near heard and McDonald islands in the Southern Ocean. Frontiers in Marine Science, 6: 531. doi: 10.3389/fmars.2019.00531
    [85]
    Wright S W, Ishikawa A, Marchant H J, et al. 2009. Composition and significance of picophytoplankton in Antarctic waters. Polar Biology, 32(5): 797–808. doi: 10.1007/s00300-009-0582-9
    [86]
    Zapata M, Rodríguez F, Garrido J. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Marine Ecology Progress, 195(3): 29-45. https://doi.org/10.3354/meps195029
    [87]
    Zhang Run, Ma Qiang, Chen Min, et al. 2019. Nitrogen uptake regime regulated by ice melting during austral summer in the Prydz Bay, Antarctica. Acta Oceanologica Sinica, 38(8): 1–7. doi: 10.1007/s13131-019-1434-2
    [88]
    Zhang Run, Zheng Minfang, Chen Min, et al. 2014. An isotopic perspective on the correlation of surface ocean carbon dynamics and sea ice melting in Prydz Bay (Antarctica) during austral summer. Deep-Sea Research Part I: Oceanographic Research Papers, 83: 24–33. doi: 10.1016/j.dsr.2013.08.006
    [89]
    Zhuang Yanpei, Jin Haiyan, Li Hongliang, et al. 2014. Phytoplankton composition and its ecological effect in subsurface cold pool of the northern Bering Sea in summer as revealed by HPLC derived pigment signatures. Acta Oceanologica Sinica, 33(6): 103–111. doi: 10.1007/s13131-014-0495-5
  • 22-01 Feng Yubin Supplementary information 上传.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (586) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return