Citation: | Haili Li, Changqing Ke, Qinghui Zhu, Xiaoyi Shen, Mengmeng Li. An improved optical flow method to estimate Arctic sea ice velocity (winter 2014−2016)[J]. Acta Oceanologica Sinica, 2021, 40(12): 148-160. doi: 10.1007/s13131-021-1867-2 |
[1] |
Agnew T A, Le Hao, Hirose T. 1997. Estimation of large-scale sea-ice motion from SSM/I 85.5 GHz imagery. Annals of Glaciology, 25: 305–311. doi: 10.3189/S0260305500014191
|
[2] |
Allison I. 1989. Pack-ice drift off East Antarctica and some implications. Annals of Glaciology, 12: 1–8. doi: 10.3189/S0260305500006881
|
[3] |
Arrigo K R, Van Dijken G L. 2011. Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research: Oceans, 116(C9): C09011
|
[4] |
Berg A, Eriksson L E B. 2014. Investigation of a hybrid algorithm for sea ice drift measurements using synthetic aperture radar images. IEEE Transactions on Geoscience and Remote Sensing, 52(8): 5023–5033. doi: 10.1109/TGRS.2013.2286500
|
[5] |
Borcea L, Callaghan T, Papanicolaou G. 2012. Synthetic aperture radar imaging and motion estimation via robust principal component analysis. SIAM Journal on Imaging Sciences, 6(3): 1445–1476
|
[6] |
Cavalieri D J, Parkinson C L, Vinnikov K Y. 2003. 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophysical Research Letters, 30(18): 1970
|
[7] |
Choudhary B K, Sinha N K, Shanker P. 2012. Pyramid method in image processing. Journal of Information Systems and Communication, 3(1): 269–273
|
[8] |
Copernicus Marine Service (CMEMS). 2020. Product user manual for Arctic Ocean physical and BGC analysis and forecasting products. Issue 5.12. http://marine.copernicus.eu/documents/PUM/CMEMS-ARC-PUM-002-ALL.pdf [2020-04/2021-01-10]
|
[9] |
Comiso J C, Meier W N, Gersten R. 2017. Variability and trends in the arctic sea ice cover: results from different techniques. Journal of Geophysical Research:Oceans, 122(8): 6883–6900. doi: 10.1002/2017JC012768
|
[10] |
Deng Juan. 2014. Northern Hemisphere sea ice variability and its relationship with climate factors (in Chinese) [dissertation]. Nanjing: Nanjing University
|
[11] |
Emery W J, Fowler C W, Maslanik J A. 1997. Satellite-derived maps of Arctic and Antarctic sea ice motion: 1988 to 1994. Geophysical Research Letters, 24(8): 897–900. doi: 10.1029/97GL00755
|
[12] |
Fleet D, Weiss Y. 2006. Optical flow estimation. In: Paragios N, Chen Yunmei, Faugeras O, eds. Handbook of Mathematical Models in Computer Vision. Boston: Springer, 237–257
|
[13] |
Girard-Ardhuin F, Ezraty R. 2012. Enhanced arctic sea ice drift estimation merging radiometer and scatterometer data. IEEE Transactions on Geoscience and Remote Sensing, 50(7): 2639–2648. doi: 10.1109/TGRS.2012.2184124
|
[14] |
Gutiérrez S, Long D G. 2003. Optical flow and scale-space theory applied to sea-ice motion estimation in Antarctica. In: Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse: IEEE, 2805–2807
|
[15] |
Horn B K P, Schunck B G. 1981. Determining optical flow. Artificial Intelligence, 17(1−3): 185–203. doi: 10.1016/0004-3702(81)90024-2
|
[16] |
Ke Ruimin, Li Zhibin, Tang Jinjun, et al. 2019. Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow. IEEE Transactions on Intelligent Transportation Systems, 20(1): 54–64. doi: 10.1109/TITS.2018.2797697
|
[17] |
Ke Changqing, Peng Haitao, Sun Bo, et al. 2013. Spatio-temporal variability of Arctic sea ice from 2002 to 2011. Journal of Remote Sensing (in Chinese), 17(2): 452–466
|
[18] |
Komarov A S, Barber D G. 2014. Sea ice motion tracking from sequential dual-polarization Radarsat-2 Images. IEEE Transactions on Geoscience and Remote Sensing, 52(1): 121–136. doi: 10.1109/TGRS.2012.2236845
|
[19] |
Kwok R, Schweiger A, Rothrock D A, et al. 1998. Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions. Journal of Geophysical Research:Oceans, 103(C4): 8191–8214. doi: 10.1029/97JC03334
|
[20] |
Kwok R, Spreen G, Pang S. 2013. Arctic sea ice circulation and drift speed: decadal trends and ocean currents. Journal of Geophysical Research: Oceans, 118(5): 2408–2425. doi: 10.1002/jgrc.20191
|
[21] |
Lan Jinhui, Li Jian, Hu Guangda, et al. 2014. Vehicle speed measurement based on gray constraint optical flow algorithm. Optik, 125(1): 289–295. doi: 10.1016/j.ijleo.2013.06.036
|
[22] |
Lavergne T, Eastwood S, Teffah Z, et al. 2010. Sea ice motion from low-resolution satellite sensors: an alternative method and its validation in the arctic. Journal of Geophysical Research: Oceans, 115(C10): C10032
|
[23] |
Lehtiranta J, Siiriä S, Karvonen J. 2015. Comparing C- and L-Band SAR images for sea ice motion estimation. The Cryosphere, 9(1): 357–366. doi: 10.5194/tc-9-357-2015
|
[24] |
Li Haili, Ke Changqing. 2017. Open water variability in the North Pole from 1982 to 2016. Haiyang Xuebao (in Chinese), 39(12): 109–121
|
[25] |
Li Haili, Ke Changqing, Zhu Qinghui, et al. 2019. Spatial-temporal variations in net primary productivity in the Arctic from 2003 to 2016. Acta Oceanologica Sinica, 38(8): 111–121. doi: 10.1007/s13131-018-1274-5
|
[26] |
Lim A, Ramesh B, Yang Yue, et al. 2019. Real-time optical flow-based video stabilization for unmanned aerial vehicles. Journal of Real-Time Image Processing, 16(6): 1975–1985. doi: 10.1007/s11554-017-0699-y
|
[27] |
Liu A K, Cavalieri D J. 1998. On sea ice drift from the wavelet analysis of the defense meteorological satellite program (DMSP) special sensor microwave imager (SSM/I) data. International Journal of Remote Sensing, 19(7): 1415–1423. doi: 10.1080/014311698215522
|
[28] |
Liu Yige, Ke Changqing, Zhang Jie. 2019. Analysis of kinematic characteristics of Antarctic sea ice from 1979 to 2014. Chinese High Technology Letters (in Chinese), 29(1): 90–98
|
[29] |
Liu A K, Zhao Yunhe, Wu S Y. 1999. Arctic sea ice drift from wavelet analysis of NSCAT and special sensor microwave imager data. Journal of Geophysical Research: Oceans, 104(C5): 11529–11538. doi: 10.1029/1998JC900115
|
[30] |
Mäkynen M, Haapala J, Aulicino G, et al. 2020. Satellite observations for detecting and forecasting sea-ice conditions: a summary of advances made in the SPICES project by the EU’s Horizon 2020 Programme. Remote Sensing, 12(7): 1214. doi: 10.3390/rs12071214
|
[31] |
Massom R A, Stammerjohn S E. 2010. Antarctic sea ice change and variability—physical and ecological implications. Polar Science, 4(2): 149–186. doi: 10.1016/j.polar.2010.05.001
|
[32] |
Meier W N, Dai Mingrui. 2006. High-resolution sea-ice motions from AMSR-E imagery. Annals of Glaciology, 44: 352–356. doi: 10.3189/172756406781811286
|
[33] |
Min Chao, Mu Longjiang, Yang Qinghua, et al. 2019. Sea ice export through the Fram Strait derived from a combined model and satellite data set. The Cryosphere, 13(12): 3209–3224. doi: 10.5194/tc-13-3209-2019
|
[34] |
Muckenhuber S, Korosov A A, Sandven S. 2016. Open-source feature-tracking algorithm for sea ice drift retrieval from sentinel-1 SAR imagery. The Cryosphere, 10(2): 913–925. doi: 10.5194/tc-10-913-2016
|
[35] |
Muckenhuber S, Sandven S. 2018. Sea ice drift data for Fram Strait derived from a feature-tracking algorithm applied on sentinel-1 SAR imagery. Data in Brief, 18(2018): 1410–1415. doi: 10.1016/j.dib.2018.04.034
|
[36] |
Ninnis R M, Emery W J, Collins M J. 1986. Automated extraction of pack ice motion from advanced very high resolution radiometer imagery. Journal of Geophysical Research:Oceans, 91(C9): 10725–10734. doi: 10.1029/JC091iC09p10725
|
[37] |
NSIDC. 2019. Polar pathfinder daily 25 km EASE-grid sea ice motion vectors, version 4-user guide. https://nsidc.org/data/NSIDC-0116/versions/4 [2019-02-25/2020-01-08]
|
[38] |
Cavalieri D J, Parkinson C L. 2012. Arctic sea ice variability and trends, 1979–2010. The Cryosphere, 6(4): 881–889
|
[39] |
Parkinson C L, Cavalieri D J, Gloersen P, et al. 1999. Arctic sea ice extents, areas, and trends, 1978–1996. Journal of Geophysical Research: Oceans, 104(C9): 20837–20856. doi: 10.1029/1999JC900082
|
[40] |
Peng Ge, Meier W N. 2018. Temporal and regional variability of arctic sea-ice coverage from satellite data. Annals of Glaciology, 59(76pt2): 191–200. doi: 10.1017/aog.2017.32
|
[41] |
Petrou Z I, Tian Yingli. 2017. High-resolution sea ice motion estimation with optical flow using satellite spectroradiometer data. IEEE Transactions on Geoscience and Remote Sensing, 55(3): 1339–1350. doi: 10.1109/TGRS.2016.2622714
|
[42] |
Petrou Z I, Xian Yang, Tian Yingli. 2018. Towards breaking the spatial resolution barriers: an optical flow and super-resolution approach for sea ice motion estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 138: 164–175. doi: 10.1016/j.isprsjprs.2018.01.020
|
[43] |
Petty A A, Webster M, Boisvert L, et al. 2018. The NASA Eulerian snow on sea ice model (NESOSIM) v1.0: initial model development and analysis. Geoscientific Model Development, 11(11): 4577–4602. doi: 10.5194/gmd-11-4577-2018
|
[44] |
Qiu Bowei, Li Chunhua, Guan Changlong, et al. 2019. The influence of sea ice drift on the distribution of multiyear ice. Transactions of Oceanology and Limnology (in Chinese), (3): 1–11
|
[45] |
Rossel R A V, Webster R. 2012. Predicting soil properties from the australian soil visible-near infrared spectroscopic database. European Journal of Soil Science, 63(6): 848–860. doi: 10.1111/j.1365-2389.2012.01495.x
|
[46] |
Rostosky P, Spreen G, Farrell S L, et al. 2018. Snow depth retrieval on Arctic sea ice from passive microwave radiometers—improvements and extensions to multiyear ice using lower frequencies. Journal of Geophysical Research: Oceans, 123(10): 7120–7138. doi: 10.1029/2018JC014028
|
[47] |
Sakov P, Counillon F, Bertino L, et al. 2012. TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Science, 8(4): 633–656. doi: 10.5194/os-8-633-2012
|
[48] |
Tian Zhongxiang, Li Chunhua, Zhang Lin, et al. 2012. Climatology characteristics of Arctic sea ice motion. Marine Forecasts (in Chinese), 29(6): 66–73
|
[49] |
Wang Liya, He Yijun, Zhang Biao, et al. 2017. Retrieval of Arctic sea ice drift using HY-2 satellite scanning microwave radiometer data. Haiyang Xuebao (in Chinese), 39(9): 110–120
|
[50] |
Wu Qing, Lang Wenhui, Zhang Xi, et al. 2014. Sea ice drift tracking in the Bohai Sea based on optical flow. In: Proceedings of SPIE 9159 Sixth International Conference on Digital Image Processing (ICDIP 2014). Athens: SPIE
|
[51] |
Zhang Jinlun, Rothrock D, Steele M. 2000. Recent changes in Arctic sea ice: the interplay between ice dynamics and thermodynamics. Journal of Climate, 13(17): 3099–3114. doi: 10.1175/1520-0442(2000)013<3099:RCIASI>2.0.CO;2
|
[52] |
Zhao Yunhe, Liu A K. 2007. Arctic sea-ice motion and its relation to pressure field. Journal of Oceanography, 63(3): 505–515. doi: 10.1007/s10872-007-0045-2
|
[53] |
Zhu Wenbin, Jia Shaofeng, Lv Aifeng. 2014. Monitoring the fluctuation of Lake Qinghai using multi-source remote sensing data. Remote Sensing, 6(11): 10457–10482. doi: 10.3390/rs61110457
|
[54] |
Zuo Zhengdao, Gao Guoping, Cheng Lingqiao, et al. 2016. Preliminary analysis of kinematic characteristics of Arctic sea ice from 1979 to 2012. Haiyang Xuebao (in Chinese), 38(5): 57–69
|