Volume 40 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
Kehong Yang, Zhimin Zhu, Yanhui Dong, Fengyou Chu, Weiyan Zhang. Evolution and diagenetic implications of framboids in the methane-related carbonates of the northern Okinawa Trough[J]. Acta Oceanologica Sinica, 2021, 40(12): 114-124. doi: 10.1007/s13131-021-1869-0
Citation: Kehong Yang, Zhimin Zhu, Yanhui Dong, Fengyou Chu, Weiyan Zhang. Evolution and diagenetic implications of framboids in the methane-related carbonates of the northern Okinawa Trough[J]. Acta Oceanologica Sinica, 2021, 40(12): 114-124. doi: 10.1007/s13131-021-1869-0

Evolution and diagenetic implications of framboids in the methane-related carbonates of the northern Okinawa Trough

doi: 10.1007/s13131-021-1869-0
Funds:  The National Natural Science Foundation of China under contract Nos 41476050, 41106047, and 41506073.
More Information
  • Corresponding author: E-mail: yangkh@sio.org.cn
  • Received Date: 2021-04-02
  • Accepted Date: 2021-06-25
  • Available Online: 2021-09-03
  • Publish Date: 2021-11-25
  • Authigenic carbonate samples were collected from the northern Okinawa Trough. Based on their carbon and oxygen isotopes, these samples were found to be methane-related carbonates precipitated by the anaerobic oxidation of methane (AOM). Petrological analysis revealed numerous framboidal pyrites that had been partly oxidized. In order to trace the variation and diagenetic information of these framboidal pyrites, their diameters and geochemical components were studied using an electron probe. The results showed that their diameters varied from 4 µm to 17 µm (n = 60; geometric mean of 9.9 µm) and were of a normal distribution. The diameters of single pyrite that formed the framboidal pyrites varied from 1 µm to 2 µm. The framboidal pyrites with diameters of 6–14 µm accounted for ~80% of the total. The geometric mean of 9.9 µm indicates that they are probably diagenetic pyrites that were precipitated in a lower dysoxic environment (weakly oxygenated bottom waters). The S/Fe ratio of the framboidal minerals ranged from 0 to 1.67, and the pyrite content of single framboid varied between 0% and 86.4%. Therefore, numerous pyrites were oxygenated to iron oxides or oxyhydroxides, and were retained as pseudomorphism pyrites. The size of framboidal pyrites precipitated in cold seeps can be used to trace the redox environment; however, acquisition of additional data via investigation of different cold seeps is necessary to obtain more persuasive results.
  • loading
  • [1]
    Baker P A, Kastner M. 1981. Constraints on the formation of sedimentary dolomite. Science, 213(4504): 214–216. doi: 10.1126/science.213.4504.214
    [2]
    Berner R A. 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48(4): 605–615. doi: 10.1016/0016-7037(84)90089-9
    [3]
    Birgel D, Feng D, Roberts H H, et al. 2011. Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico. Chemical Geology, 285(1−4): 82–96. doi: 10.1016/j.chemgeo.2011.03.004
    [4]
    Boetius A, Ravenschlag K, Schubert C J, et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804): 623–626. doi: 10.1038/35036572
    [5]
    Bond D P G, Wignall P B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. GSA Bulletin, 122(7−8): 1265–1279. doi: 10.1130/B30042.1
    [6]
    Burton E A. 1993. Controls on marine carbonate cement mineralogy: review and reassessment. Chemical Geology, 105(1): 163–179. doi: 10.1016/0009-2541(93)90124-2
    [7]
    Campbell K A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2−4): 362–407. doi: 10.1016/j.palaeo.2005.06.018
    [8]
    Cao Hong, Sun Zhilei, Wu Nengyou, et al. 2020. Mineralogical and geochemical records of seafloor cold seepage history in the northern Okinawa Trough, East China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 155: 103165. doi: 10.1016/j.dsr.2019.103165
    [9]
    Chen Duofu, Feng Dong, Su Zheng, et al. 2006. Pyrite crystallization in seep carbonates at gas vent and hydrate site. Materials Science and Engineering: C, 26(4): 602–605. doi: 10.1016/j.msec.2005.08.037
    [10]
    Chen Yingfeng, Matsumoto R, Paull C K, et al. 2007. Methane-derived authigenic carbonates from the northern Gulf of Mexico--MD02 Cruise. Journal of Geochemical Exploration, 95(1−3): 1–15. doi: 10.1016/j.gexplo.2007.05.011
    [11]
    Crémière A, Pellerin A, Wing B A, et al. 2020. Multiple sulfur isotopes in methane seep carbonates track unsteady sulfur cycling during anaerobic methane oxidation. Earth and Planetary Science Letters, 532: 115994. doi: 10.1016/j.jpgl.2019.115994
    [12]
    Fang Yinxia, Gao Jinyao, Li Mingbi, et al. 2005. Relation between gas hydrate and geologic structures in the Okinawa Trough. Marine Geology & Quaternary Geology (in Chinese), 25(1): 85–91
    [13]
    Fang Yinxia, Li Mingbi, Jin Xianglong, et al. 2003. Formation condition of gas hydrate in Okinawa Trough of the East China Sea. Bulletin of Science and Technology (in Chinese), 19(1): 1–5. doi: 10.3969/j.issn.1001-7119.2003.01.001
    [14]
    Feng Dong, Chen Duofu, Peckmann J. 2009. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova, 21(1): 49–56. doi: 10.1111/j.1365-3121.2008.00855.x
    [15]
    Feng Dong, Lin Zhijia, Bian Youyan, et al. 2013. Rare earth elements of seep carbonates: Indication for redox variations and microbiological processes at modern seep sites. Journal of Asian Earth Sciences, 65: 27–33. doi: 10.1016/j.jseaes.2012.09.002
    [16]
    Feng Xiancui, Wang Wei, Wang Wenqian, et al. 2015. Methane-derived authigenic carbonates in Nyegga pockmarks, offshore Mid-Norway. Geochimica (in Chinese), 44(4): 348–359
    [17]
    Franchi F, Rovere M, Gamberi F, et al. 2017. Authigenic minerals from the Paola Ridge (southern Tyrrhenian Sea): Evidences of episodic methane seepage. Marine and Petroleum Geology, 86: 228–247. doi: 10.1016/j.marpetgeo.2017.05.031
    [18]
    Greinert J, Bohrmann G, Suess E. 2001. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution, and origin of authigenic lithologies. In: Paull C K, Dillon W P, eds. Natural Gas Hydrates: Occurrence, Distribution, and Detection. Washington, DC, USA: American Geophysical Union, 124: 99–113, doi: 10.1029/GM124p0099
    [19]
    Guan Hongxiang, Sun Zhilei, Mao Shengyi, et al. 2019. Authigenic carbonate formation revealed by lipid biomarker inventory at hydrocarbon seeps: A case study from the Okinawa Trough. Marine and Petroleum Geology, 101: 502–511. doi: 10.1016/j.marpetgeo.2018.12.028
    [20]
    Huggins F E, Huffman G P, Kosmack D A, et al. 1980. Mossbauer detection of goethite (α-FeOOH) in coal and its potential as an indicator of coal oxidation. International Journal of Coal Geology, 1(1): 75–81. doi: 10.1016/0166-5162(80)90007-5
    [21]
    Large D J, Sawłowicz Z, Spratt J. 1999. A cobaltite-framboidal pyrite association from the Kupferschiefer: possible implications for trace element behaviour during the earliest stages of diagenesis. Mineralogical Magazine, 63(3): 353–361. doi: 10.1180/002646199548574
    [22]
    Li Jiwei, Peng Xiaotong, Bai Shijie, et al. 2018. Biogeochemical processes controlling authigenic carbonate formation within the sediment column from the Okinawa Trough. Geochimica et Cosmochimica Acta, 222: 363–382. doi: 10.1016/j.gca.2017.10.029
    [23]
    Lin Zhizhong, Sun Xiaoming, Lu Yang, et al. 2016a. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea. Journal of Asian Earth Sciences, 123: 213–223. doi: 10.1016/j.jseaes.2016.04.007
    [24]
    Lin Zhizhong, Sun Xiaoming, Lu Yang, et al. 2017. The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: Insights from the South China Sea. Chemical Geology, 449: 15–29. doi: 10.1016/j.chemgeo.2016.11.032
    [25]
    Lin Zhizhong, Sun Xiaoming, Peckmann J, et al. 2016b. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea. Chemical Geology, 440: 26–41. doi: 10.1016/j.chemgeo.2016.07.007
    [26]
    Lin Qi, Wang Jiasheng, Algeo T J, et al. 2016c. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea. Marine Geology, 379: 100–108. doi: 10.1016/j.margeo.2016.05.016
    [27]
    Lu Zhenquan, Gong Jianming, Wu Bihao, et al. 2003. Geochemical perspective of gas hydrate in the East China Sea. Marine Geology & Quaternary Geology (in Chinese), 23(3): 77–81
    [28]
    Lu Yang, Sun Xiaoming, Xu Huifang, et al. 2018. Formation of dolomite catalyzed by sulfate-driven anaerobic oxidation of methane: Mineralogical and geochemical evidence from the northern South China Sea. American Mineralogist, 103(5): 720–734. doi: 10.2138/am-2018-6226
    [29]
    Luan Xiwu, Qin Yunshan. 2005. Discovery of the cold seeps in the west Miyako section of Okiniwa Through. Chinese Science Bulletin (in Chinese), 50(8): 802–810
    [30]
    Lumsden D N. 1979. Discrepancy between thin-section and X-ray estimates of dolomite in limestone. Journal of Sedimentary Research, 49(2): 429–435
    [31]
    Lüning S, Kolonic S, Loydell D K, et al. 2003. Reconstruction of the original organic richness in weathered Silurian shale outcrops (Murzuq and Kufra basins, southern Libya). GeoArabia, 8: 299–308
    [32]
    Maclean L C W, Tyliszczak T, Gilbert P U P A, et al. 2008. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology, 6(5): 471–480. doi: 10.1111/j.1472-4669.2008.00174.x
    [33]
    Mazzini A, Ivanov M K, Parnell J, et al. 2004. Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids. Marine Geology, 212(1−4): 153–181. doi: 10.1016/j.margeo.2004.08.001
    [34]
    Mazzini A, Svensen H, Hovland M, et al. 2006. Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea. Marine Geology, 231(1−4): 89–102. doi: 10.1016/j.margeo.2006.05.012
    [35]
    Merinero R, Lunar R, Martínez-Frías J, et al. 2008. Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula). Marine and Petroleum Geology, 25(8): 706–713. doi: 10.1016/j.marpetgeo.2008.03.005
    [36]
    Moore T S, Murray R W, Kurtz A C, et al. 2004. Anaerobic methane oxidation and the formation of dolomite. Earth and Planetary Science Letters, 229(1−2): 141–154. doi: 10.1016/j.jpgl.2004.10.015
    [37]
    Naehr T H, Eichhubl P, Orphan V J, et al. 2007. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11−13): 1268–1291. doi: 10.1016/j.dsr2.2007.04.010
    [38]
    Nielsen J K, Shen Yanan. 2004. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin. Geology, 32(12): 1037–1040. doi: 10.1130/G20987.1
    [39]
    Orphan V J, House C H, Hinrichs K U, et al. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293(5529): 484–487. doi: 10.1126/science.1061338
    [40]
    Pan Zhiliang, Shi Siqi. 1986. Study on sediments and sedimentation in Okinawa Trough. Marine Geology & Quaternary Geology (in Chinese), 6(1): 17–29
    [41]
    Peckmann J, Reimer A, Luth U, et al. 2001. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Marine Geology, 177(1−2): 129–150. doi: 10.1016/s0025-3227(01)00128-1
    [42]
    Peng Xiaotong, Guo Zixiao, Chen Shun, et al. 2017. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply. Geochimica et Cosmochimica Acta, 205: 1–13. doi: 10.1016/j.gca.2017.02.010
    [43]
    Pierre C. 2017. Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin. Chemical Geology, 449: 158–164. doi: 10.1016/j.chemgeo.2016.11.005
    [44]
    Pierre C, Blanc-Valleron M M, Demange J, et al. 2012. Authigenic carbonates from active methane seeps offshore southwest Africa. Geo-Marine Letters, 32(5): 501–513. doi: 10.1007/s00367-012-0295-x
    [45]
    Pirlet H, Wehrmann L M, Foubert A, et al. 2012. Unique authigenic mineral assemblages reveal different diagenetic histories in two neighbouring cold-water coral mounds on Pen Duick Escarpment, Gulf of Cadiz. Sedimentology, 59(2): 578–604. doi: 10.1111/j.1365-3091.2011.01267.x
    [46]
    Raiswell R, Berner R A. 1985. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science, 285(8): 710–724. doi: 10.2475/ajs.285.8.710
    [47]
    Rickard D T. 1970. The origin of framboids. Lithos, 3(3): 269–293. doi: 10.1016/0024-4937(70)90079-4
    [48]
    Rickard D. 2019. Sedimentary pyrite framboid size-frequency distributions: A meta-analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 522: 62–75. doi: 10.1016/j.palaeo.2019.03.010
    [49]
    Scott R J, Meffre S, Woodhead J, et al. 2009. Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration. Economic Geology, 104(8): 1143–1168. doi: 10.2113/gsecongeo.104.8.1143
    [50]
    Sibuet J C, Deffontaines B, Hsu S K, et al. 1998. Okinawa trough backarc basin: Early tectonic and magmatic evolution. Journal of Geophysical Research: Solid Earth, 103(B12): 30245–30267. doi: 10.1029/98jb01823
    [51]
    Smrzka D, Feng D, Himmler T, et al. 2020. Trace elements in methane-seep carbonates: Potentials, limitations, and perspectives. Earth-Science Reviews, 208: 103263. doi: 10.1016/j.earscirev.2020.103263
    [52]
    Snyder G T, Hiruta A, Matsumoto R, et al. 2007. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11−13): 1216–1239. doi: 10.1016/j.dsr2.2007.04.001
    [53]
    Stakes D S, Orange D, Paduan J B, et al. 1999. Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Marine Geology, 159(1−4): 93–109. doi: 10.1016/s0025-3227(98)00200-x
    [54]
    Suess E. 2014. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Sciences, 103(7): 1889–1916. doi: 10.1007/s00531-014-1010-0
    [55]
    Sun Zhilei, Wei Hehong, Zhang Xunhua, et al. 2015. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 95: 37–53. doi: 10.1016/j.dsr.2014.10.005
    [56]
    Sun Zhilei, Wu Nengyou, Cao Hong, et al. 2019. Hydrothermal metal supplies enhance the benthic methane filter in oceans: An example from the Okinawa Trough. Chemical Geology, 525: 190–209. doi: 10.1016/j.chemgeo.2019.07.025
    [57]
    Tang Yong, Jin Xianglong, Fang Yinxia, et al. 2003. Seismic study of gas hydrate BSR in the Okinawa Trough. Acta Oceanologica Sinica (in Chinese), 25(4): 59–66. doi: 10.3321/j.issn:0253-4193.2003.04.008
    [58]
    Tong Hongpeng, Feng Dong, Peckmann J, et al. 2019. Environments favoring dolomite formation at cold seeps: A case study from the Gulf of Mexico. Chemical Geology, 518: 9–18. doi: 10.1016/j.chemgeo.2019.04.016
    [59]
    Tsunogai U, Ishibashi J, Wakita H, et al. 1996. Fresh water seepage and pore water recycling on the seafloor: Sagami Trough subduction zone, Japan. Earth and Planetary Science Letters, 138(1−4): 157–168. doi: 10.1016/0012-821X(95)00228-5
    [60]
    Valentine D L. 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek, 81(1−4): 271–282. doi: 10.1023/A:1020587206351
    [61]
    Wang Meng, Li Qing, Cai Feng, et al. 2019. Formation of authigenic carbonates at a methane seep site in the middle Okinawa Trough, East China Sea. Journal of Asian Earth Sciences, 185: 104028. doi: 10.1016/j.jseaes.2019.104028
    [62]
    Wignall P B, Newton R, Brookfield M E. 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(3−4): 183–188. doi: 10.1016/j.palaeo.2004.10.009
    [63]
    Wilkin R T, Barnes H L. 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2): 323–339. doi: 10.1016/S0016-7037(96)00320-1
    [64]
    Wilkin R T, Barnes H L, Brantley S L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20): 3897–3912. doi: 10.1016/0016-7037(96)00209-8
    [65]
    Wu Bihao, Zhang Guangxue, Zhu Youhai, et al. 2003. Progress of gas hydrate investigation in China offshore. Earth Science Frontiers (in Chinese), 10(1): 177–189. doi: 10.3321/j.issn:1005-2321.2003.01.021
    [66]
    Xie Lei, Wang Jiasheng, Wu Nengyou, et al. 2013. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea: Implications for a possible mud volcano environment. Science China Earth Sciences, 56(4): 541–548. doi: 10.1007/s11430-012-4511-3
    [67]
    Xu Cuiling, Wu Nengyou, Sun Zhilei, et al. 2018. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the Mid-Okinawa Trough. Marine and Petroleum Geology, 98: 306–315. doi: 10.1016/j.marpetgeo.2018.08.021
    [68]
    Zhang Mei, Konishi H, Xu Huifang, et al. 2014. Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea. Journal of Asian Earth Sciences, 92: 293–301. doi: 10.1016/j.jseaes.2014.05.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (841) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return