Citation: | Jintang Ou, Haoyan Dong, Liangwen Jia, Xiangxin Luo, Zixiao He, Kanglin Chen, Jing Liu, Yitong Lin, Mingdong Yu, Mingen Liang. Short-term variations and influencing factors of suspended sediment concentrations at the Heisha Beach, Guangdong, China[J]. Acta Oceanologica Sinica, 2022, 41(5): 51-63. doi: 10.1007/s13131-021-1874-3 |
[1] |
Aagaard T, Greenwood B. 1995. Suspended sediment transport and morphological response on a dissipative beach. Continental Shelf Research, 15(9): 1061–1086. doi: 10.1016/0278-4343(94)00068-X
|
[2] |
Aagaard T, Greenwood B, Hughes M. 2013. Sediment transport on dissipative, intermediate and reflective beaches. Earth-Science Reviews, 124: 32–50. doi: 10.1016/j.earscirev.2013.05.002
|
[3] |
Aagaard T, Hughes M G. 2006. Sediment suspension and turbulence in the swash zone of dissipative beaches. Marine Geology, 228(1−2): 117–135
|
[4] |
Aagaard T, Hughes M G. 2010. Breaker turbulence and sediment suspension in the surf zone. Marine Geology, 271(3−4): 250–259. doi: 10.1016/j.margeo.2010.02.019
|
[5] |
Beach R A, Sternberg R W. 1996. Suspended-sediment transport in the surf zone: response to breaking waves. Continental Shelf Research, 16(15): 1989–2003. doi: 10.1016/0278-4343(96)00029-5
|
[6] |
Bolaños R, Thorne P D, Wolf J. 2012. Comparison of measurements and models of bed stress, bedforms and suspended sediments under combined currents and waves. Coastal Engineering, 62: 19–30. doi: 10.1016/j.coastaleng.2011.12.005
|
[7] |
Brenninkmeyer S J B. 1976. In situ measurements of rapidly fluctuating, high sediment concentrations. Marine Geology, 20(2): 117–128. doi: 10.1016/0025-3227(76)90082-7
|
[8] |
Conley D C, Beach R A. 2003. Cross-shore sediment transport partitioning in the nearshore during a storm event. Journal of Geophysical Research: Oceans, 108(C3): 3065. doi: 10.1029/2001JC001230
|
[9] |
Cox D T, Anderson S L. 2001. Statistics of intermittent surf zone turbulence and observations of large eddies using PIV. Coastal Engineering Journal, 43(2): 121–131. doi: 10.1142/S057856340100030X
|
[10] |
Cox D T, Kobayashi N. 2000. Identification of intense, intermittent coherent motions under shoaling and breaking waves. Journal of Geophysical Research: Oceans, 105(C6): 14223–14236. doi: 10.1029/2000JC900048
|
[11] |
Fan Renfu, Wei Hao, Zhao Liang, et al. 2019. Identify the impacts of waves and tides to coastal suspended sediment concentration based on high-frequency acoustic observations. Marine Geology, 408: 154–164. doi: 10.1016/j.margeo.2018.12.005
|
[12] |
Folk R L, Ward W C. 1957. Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1): 3–26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
|
[13] |
Foster D L, Beach R A, Holman R A. 2000. Field observations of the wave bottom boundary layer. Journal of Geophysical Research: Oceans, 105(C8): 19631–19647. doi: 10.1029/1999JC900018
|
[14] |
Foster D L, Beach R A, Holman R A. 2006. Turbulence observations of the nearshore wave bottom boundary layer. Journal of Geophysical Research: Oceans, 111(C4): C04011
|
[15] |
Grant W D, Madsen O S. 1979. Combined wave and current interaction with a rough bottom. Journal of Geophysical Research: Oceans, 84(C4): 1797–1808. doi: 10.1029/JC084iC04p01797
|
[16] |
Hansen J B, Svendsen I A. 1984. A theoretical and experimental study of undertow. In: Conference of 19th International Conference on Coastal Engineering. Houston: ASCE, 2246–2262
|
[17] |
Jaffe B, Sallenger A Jr. 1992. The contribution of suspension events to sediment transport in the surf zone. In: Conference of 23rd International Conference on Coastal Engineering. Venice: ASCE, 2680–2693
|
[18] |
Jia Liangwen, Ren Jie, Nie Dan, et al. 2014. Wave-current bottom shear stresses and sediment re-suspension in the mouth bar of the Modaomen Estuary during the dry season. Acta Oceanologica Sinica, 33(7): 107–115. doi: 10.1007/s13131-014-0510-x
|
[19] |
Jing L, Ridd P V. 1996. Wave-current bottom shear stresses and sediment resuspension in Cleveland Bay, Australia. Coastal Engineering, 29(1−2): 169–186. doi: 10.1016/S0378-3839(96)00023-3
|
[20] |
Jonsson I G. 1966. Wave boundary layers and friction factors. In: Conference of 10th International Conference on Coastal Engineering. Tokyo: ASCE, 127–148
|
[21] |
Kos’yan R D, Kunz H, Kuznetsov S Y, et al. 1996. Sand suspension events and intermittence of turbulence in the surf zone. In: Conference of 25th International Conference on Coastal Engineering. Orlando: ASCE, 4111–4119
|
[22] |
LeClaire P D, Ting F C K. 2017. Measurements of suspended sediment transport and turbulent coherent structures induced by breaking waves using two-phase volumetric three-component velocimetry. Coastal Engineering, 121: 56–76. doi: 10.1016/j.coastaleng.2016.11.008
|
[23] |
Liang Bingchen, Li Huajun, Lee D. 2007. Numerical study of three-dimensional suspended sediment transport in waves and currents. Ocean Engineering, 34(11−12): 1569–1583. doi: 10.1016/j.oceaneng.2006.12.002
|
[24] |
Maity S K, Maiti R. 2016. Analysis of sedimentation in connection to grain size and shear stress at lower reach of the Rupnarayan River, West Bengal, India. Indian Journal of Geo-Marine Sciences, 45(9): 1128–1137
|
[25] |
Nahler G. 2009. Pearson correlation coefficient. In: Nahler G, ed. Dictionary of Pharmaceutical Medicine. Vienna: Springer Vienna, 132
|
[26] |
Nielsen P. 1992. Coastal Bottom Boundary Layers and Sediment Transport. Singapore: World Scientific
|
[27] |
Ogston A S, Sternberg R W. 1995. On the importance of nearbed sediment flux measurements for estimating sediment transport in the surf zone. Continental Shelf Research, 15(13): 1515–1524. doi: 10.1016/0278-4343(95)00036-Z
|
[28] |
Pang Wenhong, Dai Zhijun, Ge Zhenpeng, et al. 2019. Near-bed cross-shore suspended sediment transport over a meso-macro tidal beach under varied wave conditions. Estuarine, Coastal and Shelf Science, 217: 69–80
|
[29] |
Pang Wenhong, Dai Zhijun, Ma Binbin, et al. 2020. Linkage between turbulent kinetic energy, waves and suspended sediment concentrations in the nearshore zone. Marine Geology, 425: 106190. doi: 10.1016/j.margeo.2020.106190
|
[30] |
Ruessink B G. 2010. Observations of turbulence within a natural surf zone. Journal of Physical Oceanography, 40(12): 2696–2712. doi: 10.1175/2010JPO4466.1
|
[31] |
Signell R P, Beardsley R C, Graber H C, et al. 1990. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments. Journal of Geophysical Research: Oceans, 95(C6): 9671–9678. doi: 10.1029/JC095iC06p09671
|
[32] |
Smyth C, Hay A E. 2003. Near-bed turbulence and bottom friction during SandyDuck97. Journal of Geophysical Research: Oceans, 108(C6): 3197. doi: 10.1029/2001JC000952
|
[33] |
Soulsby R L. 1997. The Dynamics of Marine Sands: A Manual for Practical Applications. London: Thomas Thelford
|
[34] |
Soulsby R L, Hamm L, Klopman G, et al. 1993. Wave-current interaction within and outside the bottom boundary layer. Coastal Engineering, 21(1−3): 41–69. doi: 10.1016/0378-3839(93)90045-A
|
[35] |
Spearman C. 1904. The proof and measurement of association between two things. The American Journal of Psychology, 15(1): 72–101. doi: 10.2307/1412159
|
[36] |
Swart D H. 1974. Offshore sediment transport and equilibrium beach profiles [dissertation]. Delft, Netherlands: Delft Hydraulics Laboratory
|
[37] |
Van Rijn L C. 2007. Unified view of sediment transport by currents and waves. II: suspended transport. Journal of Hydraulic Engineering, 133(6): 668–689. doi: 10.1061/(ASCE)0733-9429(2007)133:6(668)
|
[38] |
Xing Fei, Wang Yaping, Wang H V. 2012. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea. Marine Geology, 291–294: 192–210
|
[39] |
Xiong Jilian, Wang Xiaohua, Wang Yaping, et al. 2017. Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea. Estuarine, Coastal and Shelf Science, 191: 221–233
|
[40] |
Yang Yang, Wang Yaping, Gao Shu, et al. 2016. Sediment resuspension in tidally dominated coastal environments: new insights into the threshold for initial movement. Ocean Dynamics, 66(3): 401–417. doi: 10.1007/s10236-016-0930-6
|
[41] |
Yoon H D, Cox D T. 2012. Cross-shore variation of intermittent sediment suspension and turbulence induced by depth-limited wave breaking. Continental Shelf Research, 47: 93–106. doi: 10.1016/j.csr.2012.07.001
|
[42] |
Yu Qian, Wang Yaping, Flemming B, et al. 2012. Tide-induced suspended sediment transport: depth-averaged concentrations and horizontal residual fluxes. Continental Shelf Research, 34: 53–63. doi: 10.1016/j.csr.2011.11.015
|
[43] |
Zar J H. 1972. Significance testing of the Spearman rank correlation coefficient. Journal of the American Statistical Association, 67(339): 578–580. doi: 10.1080/01621459.1972.10481251
|
1. | Longjiang Mu, Xi Liang, Qinghua Yang, et al. Arctic Ice Ocean Prediction System: evaluating sea-ice forecasts during Xuelong's first trans-Arctic Passage in summer 2017. Journal of Glaciology, 2019, 65(253): 813. doi:10.1017/jog.2019.55 | |
2. | Chao Min, Longjiang Mu, Qinghua Yang, et al. Sea ice export through the Fram Strait derived from a combined model and satellite data set. The Cryosphere, 2019, 13(12): 3209. doi:10.5194/tc-13-3209-2019 | |
3. | Longjiang Mu, Qinghua Yang, Martin Losch, et al. Improving sea ice thickness estimates by assimilating CryoSat ‐2 and SMOS sea ice thickness data simultaneously. Quarterly Journal of the Royal Meteorological Society, 2018, 144(711): 529. doi:10.1002/qj.3225 | |
4. | Longjiang Mu, Martin Losch, Qinghua Yang, et al. Arctic-Wide Sea Ice Thickness Estimates From Combining Satellite Remote Sensing Data and a Dynamic Ice-Ocean Model with Data Assimilation During the CryoSat-2 Period. Journal of Geophysical Research: Oceans, 2018, 123(11): 7763. doi:10.1029/2018JC014316 |