Volume 40 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
Wanying Chen, Jieying Na, Chengcheng Shen, Ruiyan Zhang, Bo Lu, Hong Cheng, Chunsheng Wang, Dongsheng Zhang. Ophiuroid fauna of cobalt-rich crust seamounts in the Northwest Pacific Ocean[J]. Acta Oceanologica Sinica, 2021, 40(12): 55-78. doi: 10.1007/s13131-021-1887-y
Citation: Wanying Chen, Jieying Na, Chengcheng Shen, Ruiyan Zhang, Bo Lu, Hong Cheng, Chunsheng Wang, Dongsheng Zhang. Ophiuroid fauna of cobalt-rich crust seamounts in the Northwest Pacific Ocean[J]. Acta Oceanologica Sinica, 2021, 40(12): 55-78. doi: 10.1007/s13131-021-1887-y

Ophiuroid fauna of cobalt-rich crust seamounts in the Northwest Pacific Ocean

doi: 10.1007/s13131-021-1887-y
Funds:  The National Natural Science Foundation of China under contract No. 42076135; the China Ocean Mineral Resources R&D Association under contract Nos DY135-E2-2-03 and DY135-E2-2-06; the Project of State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, under contract No. SOEDZZ2002; the Scientific Research Fund of the Second Institute of Oceanography, Ministry of Natural Resources under contract No. JG1528.
More Information
  • Corresponding author: E-mail: dszhang@sio.org.cn
  • Received Date: 2021-04-22
  • Accepted Date: 2021-06-21
  • Available Online: 2021-09-23
  • Publish Date: 2021-11-25
  • Seamounts are vulnerable ecosystems in the deep sea and can be heavily impacted by human activities, such as bottom fishing and deep-sea mining. The species composition and distribution patterns of benthic fauna is key information for the designation of marine protected areas and environmental management plans. Three contracts for cobalt-rich crust exploration have been granted to China, Japan and Korea in the Northwest Pacific Ocean by the International Seabed Authority. However, our knowledge of benthic biodiversity in this area is extremely insufficient. During 2013–2020, eight Chinese Ocean Mineral Resources R&D Association (COMRA) cruises were conducted to investigate the benthic assemblages of nine seamounts in this region. In this study, 191 ophiuroids collected from seamounts in the Northwest Pacific were identified into 29 species in 11 families. Ophiacanthidae and Euryalidae were the two most dominant families with 12 and 6 species, respectively. Ophiotomidae and Ophiopyrgidae were represented by two species each, while seven families were represented by only one species. Four species were widely distributed among 4–5 seamounts, and 17 species were found only at a single site. An integrated regional taxonomic dataset of Ophiuroidea was generated and analyzed. A total of 23 and 14 species were obtained from the Magellan Seamount Chain (MSC) and the Marcus-Wake seamounts (MWS), respectively, with 8 species shared between the two seamount groups. The individual-based rarefaction curves did not reach an asymptote, suggesting that the sampling effort was inadequate for either the entire region or each single seamount. Most species distributed in a narrow depth range, and the species composition was different between water depths above and below 2 000 m. Our results greatly improve the understanding of megafaunal biodiversity from seamounts in the Northwest Pacific Ocean, and highlight the necessity of further surveys to provide more robust information for environmental protection and management in this region.
  • loading
  • [1]
    Althaus F, Williams A, Schlacher T A, et al. 2009. Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Marine Ecology Progress Series, 397: 279–294. doi: 10.3354/meps08248
    [2]
    Andrews A H, Stone R P, Lundstrom C C, et al. 2009. Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined 210Pb dating. Marine Ecology Progress Series, 397: 173–185. doi: 10.3354/meps08193
    [3]
    Atkinson L J, Field J G, Hutchings L. 2011. Effects of demersal trawling along the west coast of southern Africa: multivariate analysis of benthic assemblages. Marine Ecology Progress Series, 430: 241–255. doi: 10.3354/meps08956
    [4]
    Baker A N. 1980. Euryalinid Ophiuroidea (Echinodermata) from Australia, New Zealand, and the south-west Pacific Ocean. New Zealand Journal of Zoology, 7(1): 11–83. doi: 10.1080/03014223.1980.10423763
    [5]
    Buesseler K O, Boyd P W, Black E E, et al. 2020. Metrics that matter for assessing the ocean biological carbon pump. Proceedings of the National Academy of Sciences of the United States of America, 117(18): 9679–9687. doi: 10.1073/pnas.1918114117
    [6]
    Carreiro-Silva M, Andrews A H, Braga-Henriques A, et al. 2013. Variability in growth rates of long-lived black coral leiopathes sp. from the Azores. Marine Ecology Progress Series, 473: 189–199. doi: 10.3354/meps10052
    [7]
    Chen Wanying, Na Jieying, Zhang Dongsheng. 2021. Description of three species of ophioplinthacids, including a new species, from a deep seamount in the Northwest Pacific Ocean. PeerJ, 9: e11566. doi: 10.7717/peerj.11566
    [8]
    Cherbonnier G, Sibuet M. 1972. Resultats Scientifique de la compagne Noratlante: Asterides et Ophiures. Bulletin du Museum National d’Histoire Naturell Paris 3e serie Zoologie, 102(76): 1333–1394
    [9]
    Cho W, Shank T M. 2010. Incongruent patterns of genetic connectivity among four ophiuroid species with differing coral host specificity on North Atlantic seamounts. Marine Ecology, 31: 121–143. doi: 10.1111/j.1439-0485.2010.00395.x
    [10]
    Cho W W. 2008. Faunal biogeography community structure and genetic connectivity of North Atlantic seamounts [dissertation]. Cambridge: Woods Hole Oceanographic Institution
    [11]
    Christodoulou M, O’Hara T D, Hugall A F, et al. 2019. Dark ophiuroid biodiversity in a prospective abyssal mine field. Current Biology, 29(22): 3909–3912.e3. doi: 10.1016/j.cub.2019.09.012
    [12]
    Christodoulou M, O’Hara T D, Hugall A F, et al. 2020. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the Northeast Pacific Ocean and implications for conservation. Biogeosciences, 17(7): 1845–1876. doi: 10.5194/bg-17-1845-2020
    [13]
    Clark A H. 1949. Ophiuroidea of the Hawaiian Islands. Bulletin of the Bernice P. Bishop Museum, 195: 3–133
    [14]
    Clark M R, Rowden A A, Schlacher T, et al. 2010. The ecology of seamounts: structure, function, and human impacts. Annual Review of Marine Science, 2: 253–278. doi: 10.1146/annurev-marine-120308-081109
    [15]
    Clark M R, Schlacher T A, Rowden A A, et al. 2012. Science priorities for seamounts: research links to conservation and management. PLoS One, 7(1): e29232. doi: 10.1371/journal.pone.0029232
    [16]
    Clark M R, Bowden D A. 2015. Seamount biodiversity: high variability both within and between seamounts in the Ross Sea region of Antarctica. Hydrobiologia, 761(1): 161–180. doi: 10.1007/s10750-015-2327-9
    [17]
    Clark M R, Althaus F, Schlacher T A, et al. 2016. The impacts of deep-sea fisheries on benthic communities: a review. ICES Journal of Marine Science, 73(S1): i51–i69
    [18]
    De Forges B R, Koslow J A, Poore G C B. 2000. Diversity and endemism of the benthic seamount fauna in the Southwest Pacific. Nature, 405(6789): 944–947. doi: 10.1038/35016066
    [19]
    Dong Dong, Li Xinzheng, Lu Bo, et al. 2017. Three squat lobsters (Crustacea: Decapoda: Anomura) from tropical West Pacific seamounts, with description of a new species of Uroptychus Henderson, 1888. Zootaxa, 4311(3): 389–398. doi: 10.11646/zootaxa.4311.3.4
    [20]
    Forbes E. 1843. XVIII. On the radiata of the eastern Mediterranean. Part I., Ophiuridæ. Transactions of the Linnean Society of London, 19(2): 143–153. doi: 10.1111/j.1096-3642.1842.tb00360.x
    [21]
    Fujita T, Ohta S. 1988. Photographic observations of the life style of a deep-sea ophiuroid Asteronyx loveni (Echinodermata). Deep Sea Research Part A. Oceanographic Research Papers, 35(12): 2029–2043
    [22]
    Girard F, Fu B, Fisher C R. 2016. Mutualistic symbiosis with ophiuroids limited the impact of the Deepwater Horizon oil spill on deep-sea octocorals. Marine Ecology Progress Series, 549: 89–98. doi: 10.3354/meps11697
    [23]
    Grange K R. 1991. Mutualism between the antipatharian Antipathes fiordensis and the ophiuroid Astrobrachion constrictum in New Zealand fjords. Hydrobiologia, 216(1): 297–303
    [24]
    Gray J E. 1840. Synopsis of the contents of the British Museum. 42nd ed. London: Woodfall, 57–65
    [25]
    Hertz M. 1927. Die Ophiuroiden der Deutschen Südpolar-Expedition. Deutsche Südpolar-Expedition 1901–1903. Berlin: Walter De Gryter Inc, 1–54
    [26]
    Hunter R L, Halanych K M. 2008. Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. Journal of Heredity, 99(2): 137–148. doi: 10.1093/jhered/esm119
    [27]
    Koehler R. 1904. Ophiures de l’expédition du Siboga, Part 1. Ophiures de mer profonde. In: Siboga Expeditie. Leiden: Boekhandel en Drukkerij voorheen Brill E J, 1–176
    [28]
    Koehler R. 1922. Ophiurans of the Philippine Seas and adjacent waters. Smithsonian Institution, (5): 1–486
    [29]
    Koehler R. 1930. Ophiures recueillies par le Docteur Th. Mortensen dans les Mers d’Australie et dans l’Archipel Malais. Papers from Dr. Th. Mortensen’s Pacific Expedition 1914-16. LIV. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening, 89: 1–295
    [30]
    Koslow J A, Gowlett-Holmes K, Lowry J K, et al. 2001. Seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling. Marine Ecology Progress Series, 213: 111–125. doi: 10.3354/meps213111
    [31]
    Lütken C F. 1856. Bidrag til kundskab om Slangestjernerne: II. Oversigt over de vestindiske Ophiurer. Videnskabelige Meddelelser fra Dansk Naturhistorisk Förening i Kjøbenhavn 1856, 8: 1–19
    [32]
    Lütken C F, Mortensen T. 1899. Reports on an exploration off the west coasts of Mexico, Central and Southern America and off the Galapagos Islands. Vol XXV. The Ophiuridae. Cambridge, USA: Marshall McDonald and Georgr M Bowers, 97–208
    [33]
    Lamarck J B. 1981. Histoire Naturelle des Animaux Sans Vertèbres: Vol 1. New York, USA: Cambridge University Press, 568
    [34]
    Levin L A, Ziebis W, Mendoza G F, et al. 2003. Spatial heterogeneity of macrofauna at northern California methane seeps: influence of sulfide concentration and fluid flow. Marine Ecology Progress Series, 265: 123–139. doi: 10.3354/meps265123
    [35]
    Litvinova N M. 1981. Brittle-stars (Ophiuroidea). Moscow: Institute of Oceanology P P Shirshov oh the Russian Academy of Science, 113–131
    [36]
    Ljungman A V. 1867. Ophiuroidea viventia huc usque cognita. Ö fversigt af Kungliga Vetenskaps-Akademiens Fö rhandlingar, 1866, 23: 303–336
    [37]
    Lyman T. 1869. Preliminary report on the Ophiuridae and Astrophytidae dredged in deep water between Cuba and Florida Reef. Bulletin of the Museum of Comparative Zoology at Harvard College, 1: 309–354
    [38]
    Lyman T. 1878. Ophiuridae and Astrophytidae of the Challenger expedition. In: Bulletin of the Museum of Comparative Zoology at Harvard College, Vol V. Cambridge, Mass, USA: Kraus Reprint Corporation, 65–108
    [39]
    Lyman T. 1879. Ophiuridae and Astrophytidae of the exploring voyage of H. M. S. ‘Challenger ’ under Prof. Sir Wyville Thomson, F. R. S. Part II. Bulletin of the Museum of Comparative Zoology at Harvard College, 6: 17–83
    [40]
    Müller J P, Troschel F H. 1842. System der Asteriden. Braunschweig: Friedrich Vieweg und Sohn, 134
    [41]
    Mangano M C, Kaiser M J, Porporato E M D, et al. 2013. Effects of trawling impacts on mega-epibenthic communities from heavy exploited to undisturbed areas in a Mediterranean fishing ground (Central Mediterranean Sea). In: Proceeding of ICES Annual Science Conference 2013. Reykjavik: ICES
    [42]
    Martynov A. 2010. Reassessment of the classification of the Ophiuroidea (Echinodermata), based on morphological characters. I. General character evaluation and delineation of the families Ophiomyxidae and Ophiacanthidae. Zootaxa, 2697: 1–154
    [43]
    Matsumoto H. 1915. A new classification of the Ophiuroidea: with descriptions of new genera and species. Proceedings of the Academy of Natural Sciences of Philadelphia, 67: 43–92
    [44]
    McClain C R, Lundsten L, Barry J, et al. 2010. Assemblage structure, but not diversity or density, change with depth on a northeast Pacific seamount. Marine Ecology, 31: 14–25. doi: 10.1111/j.1439-0485.2010.00367.x
    [45]
    McKnight D G. 2003. New brittle-stars (Echinodermata: Ophiuroidea) from New Zealand waters. Zootaxa, 352(1): 1–36. doi: 10.11646/zootaxa.352.1.1
    [46]
    Menegotto A, Rangel T F. 2018. Mapping knowledge gaps in marine diversity reveals a latitudinal gradient of missing species richness. Nature Communications, 9: 4713. doi: 10.1038/s41467-018-07217-7
    [47]
    Morgan N B, Cairns S, Reiswig H, et al. 2015. Benthic megafaunal community structure of cobalt-rich manganese crusts on Necker Ridge. Deep Sea Research Part I: Oceanographic Research Papers, 104: 92–105. doi: 10.1016/j.dsr.2015.07.003
    [48]
    Mosher C V, Watling L. 2009. Partners for life: a brittle star and its octocoral host. Marine Ecology Progress Series, 397: 81–88. doi: 10.3354/meps08113
    [49]
    Na Jieying, Chen Wanying, Zhang Dongsheng, et al. 2021. Morphological description and population structure of a ophiuroid species from cobalt-rich crust seamounts in the northwest Pacific: implications for marine protection under deep-sea mining. Acta Oceanological Sinica, 40(8):1−11,
    [50]
    O’Hara T D, Stöhr S. 2006. Deep water ophiuroidea (Echinodermata) of new Caledonia: ophiacanthidae and hemieuryalidae. In: De Forges R B, ed. Tropical Deep-Sea Benthos 24. Mémoires du Muséum National d’Histoire Naturelle. Paris: Publications Scientifiques du Muséum, 193: 33–141
    [51]
    O’Hara T D. 2007. Seamounts: centres of endemism or species richness for ophiuroids?. Global Ecology and Biogeography, 16(6): 720–732
    [52]
    O’Hara T D, Rowden A A, Williams A. 2008. Cold-water coral habitats on seamounts: do they have a specialist fauna?. Diversity and Distributions, 14(6): 925–934. doi: 10.1111/j.1472-4642.2008.00495.x
    [53]
    O’Hara T D, Tittensor D P. 2010. Environmental drivers of ophiuroid species richness on seamounts. Marine Ecology, 31(S1): 26–38
    [54]
    O’Hara T D, England P R, Gunasekera R M, et al. 2014. Limited phylogeographic structure for five bathyal ophiuroids at continental scales. Deep-Sea Research Part I: Oceanographic Research Papers, 84: 18–28. doi: 10.1016/j.dsr.2013.09.009
    [55]
    O’Hara T D, Hugall A F, Thuy B, et al. 2017. Restructuring higher taxonomy using broad-scale phylogenomics: The living Ophiuroidea. Molecular Phylogenetics and Evolution, 107: 415–430. doi: 10.1016/j.ympev.2016.12.006
    [56]
    O’Hara T D, Stöhr S, Hugall A F, et al. 2018. Morphological diagnoses of higher taxa in Ophiuroidea (Echinodermata) in support of a new classification. European Journal of Taxonomy, 416: 1–35
    [57]
    O’Hara T D, Hugall A F, Woolley S N C, et al. 2019. Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors. Nature, 565(7741): 636–639. doi: 10.1038/s41586-019-0886-z
    [58]
    O’Hara T D, Rowden A A, Bax N J. 2011. A southern hemisphere bathyal fauna is distributed in latitudinal bands. Current Biology, 21(3): 226–230. doi: 10.1016/j.cub.2011.01.002
    [59]
    Okanishi M, Fujita T. 2013. Molecular phylogeny based on increased number of species and genes revealed more robust family-level systematics of the order Euryalida (Echinodermata: Ophiuroidea). Molecular Phylogenetics and Evolution, 69(3): 566–580. doi: 10.1016/j.ympev.2013.07.021
    [60]
    Okanishi M, O’Hara T D, Fujita T. 2011. Molecular phylogeny of the order Euryalida (Echinodermata: Ophiuroidea), based on mitochondrial and nuclear ribosomal genes. Molecular Phylogenetics and Evolution, 61(2): 392–399
    [61]
    Ordines F, Ramírez-Amaro S, Fernandez-Arcaya U, et al. 2019. First occurrence of an Ophiohelidae species in the Mediterranean: the high abundances of Ophiomyces grandis from the Mallorca Channel seamounts. Journal of the Marine Biological Association of the United Kingdom, 99(8): 1817–1823. doi: 10.1017/S0025315419000808
    [62]
    Pasternak F A. 1981. Alcyonacea and Gorgonacea. In: Kuznetsov A P, Mironov A N, eds. Benthos of the Submarine Mountains Marcus-Necker and Adjacent Pacific Regions. Moscow: Akademiya Nauk, 40–55
    [63]
    Paterson G L J. 1985. The deep-sea Ophiuroidea of the North Atlantic Ocean. The Bulletin of the British Museum (Natural History), 49: 1–162. doi: 10.5962/bhl.part.6511
    [64]
    Perrier E. 1893. Echinodermes. Traité de Zoologie, Ophiures. Paris: Smithsonian Libraries, 781–864
    [65]
    Roark E B, Guilderson T P, Dunbar R B, et al. 2009. Extreme longevity in proteinaceous deep-sea corals. Proceedings of the National Academy of Sciences of the United States of America, 106(13): 5204–5208. doi: 10.1073/pnas.0810875106
    [66]
    Salinas H F O, Alder V A, Puig A, et al. 2015. Latitudinal diversity patterns of diatoms in the Southwestern Atlantic and Antarctic waters. Journal of Plankton Research, 37(4): 659–665. doi: 10.1093/plankt/fbv042
    [67]
    Samadi S, Bottan L, Macpherson E, et al. 2006. Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates. Marine Biology, 149(6): 1463–1475. doi: 10.1007/s00227-006-0306-4
    [68]
    Samedi S, Schlacher T A, Richer de Forges B. 2007. Seamount benthos. In: Pitcher T J, Morato T, Hart P J B, et al. eds. Seamounts: Ecology, Fisheries and Conservation. Oxford, UK: Blackwell Scientific, 119–140
    [69]
    Schlacher T A, Baco A R, Rowden A A, et al. 2014. Seamount benthos in a cobalt-rich crust region of the central Pacific: conservation challenges for future seabed mining. Diversity and distributions, 20(5): 491–502. doi: 10.1111/ddi.12142
    [70]
    Shank T M. 2010. Seamounts: deep-ocean laboratories of fauna connectivity, evolution, and endemism. Oceanography, 23(1): 108–122. doi: 10.5670/oceanog.2010.65
    [71]
    Shen Chengcheng, Zhang Dongsheng, Lu Bo, et al. 2020. A new species of glass sponge (Hexactinellida: Sceptrulophora: Uncinateridae) from the Weijia Seamount in the northwestern Pacific Ocean. Zootaxa, 4878(2): 322–334. doi: 10.11646/zootaxa.4878.2.6
    [72]
    Siqueira A C, Oliveira-Santos L G R, Cowman P F, et al. 2016. Evolutionary processes underlying latitudinal differences in reef fish biodiversity. Global Ecology and Biogeography, 25(12): 1466–1476. doi: 10.1111/geb.12506
    [73]
    Sponer R, Roy M S. 2002. Phylogeographic analysis of the brooding brittle star Amphipholis squamata (Echinodermata) along the coast of New Zealand reveals high cryptic genetic variation and cryptic dispersal potential. Evolution, 56(10): 1954–1967. doi: 10.1111/j.0014-3820.2002.tb00121.x
    [74]
    Stöhr S, Weber A A T, Boissin E, et al. 2020. Resolving the Ophioderma longicauda (Echinodermata: Ophiuroidea) cryptic species complex: five sisters, three of them new. European Journal of Taxonomy, 607: 1–2
    [75]
    Stöhr S, O’Hara T D, Thuy B. 2012. Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS One, 7(3): e31940. doi: 10.1371/journal.pone.0031940
    [76]
    Sun Dong, Wang Chunsheng. 2017. Latitudinal distribution of zooplankton communities in the Western Pacific along 160°E during summer 2014. Journal of Marine Systems, 169: 52–60. doi: 10.1016/j.jmarsys.2017.01.011
    [77]
    Thompson A, Sanders J, Tandstad M, et al. 2017. Vulnerable marine ecosystems: processes and practices in the high seas. Rome, Italy: Fisheries and Aquaculture Technical Paper (FAO)
    [78]
    Thuy B, Stöhr S. 2011. Lateral arm plate morphology in brittle stars (Echinodermata: Ophiuroidea): New perspectives for ophiuroid micropalaeontology and classification. Zootaxa, 3013(1): 1–47. doi: 10.11646/zootaxa.3013.1.1
    [79]
    Thuy B, Stöhr S. 2016. A new morphological phylogeny of the Ophiuroidea (Echinodermata) accords with molecular evidence and renders microfossils accessible for cladistics. PLoS One, 11(5): e0156140. doi: 10.1371/journal.pone.0156140
    [80]
    Verrill A E. 1884. Notice of the remarkable marine fauna occupying the outer banks off the southern coast of New England; No. 9, Brief contributions to zoology from the Museum of Yale College; No. LV. American Journal of Science, s3-28(165): 213–220. doi: 10.2475/ajs.s3-28.165.213
    [81]
    Verrill A E. 1899. North American Ophiuroidea: I. Revision of certain families and genera of West Indian Ophiurans. II. A faunal catalogue of the knows species of West Indian Ophiurans. Transactions of the Connecticut Academy of Arts and Science, 10: 301–386
    [82]
    Victorero L, Robert K, Robinson L F, et al. 2018. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Scientific Reports, 8: 4152. doi: 10.1038/s41598-018-22296-8
    [83]
    Wang Dexiang, Wang Chunsheng, Zhang Yuan, et al. 2016. Three new species of glass sponges Pheronematidae (Porifera: Hexactinellida) from the deep-sea of the northwestern Pacific Ocean. Zootaxa, 4171(3): 562–574. doi: 10.11646/zootaxa.4171.3.10
    [84]
    Watling L, Auster P J. 2017. Seamounts on the high seas should be managed as vulnerable marine ecosystems. Frontiers in Marine Science, 4: 14
    [85]
    Woolley S N C, Tittensor D P, Dunstan P K, et al. 2016. Deep-sea diversity patterns are shaped by energy availability. Nature, 533(7603): 393–396. doi: 10.1038/nature17937
    [86]
    Xu Peng, Liu Feng, Ding Zhongjun, et al. 2016. A new species of the thorid genus Paralebbeus Bruce & Chace, 1986 (Crustacea: Decapoda: Caridea) from the deep sea of the Northwestern Pacific Ocean. Zootaxa, 4085(1): 119–126. doi: 10.11646/zootaxa.4085.1.5
    [87]
    Xu Peng, Zhou Yadong, Wang Chunsheng. 2017. A new species of deep-sea sponge-associated shrimp from the North-West Pacific (Decapoda, Stenopodidea, Spongicolidae). Zookeys, 685: 1–14. doi: 10.3897/zookeys.685.11341
    [88]
    Yesson C, Clark M R, Taylor M L, et al. 2011. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep Sea Research Part I: Oceanographic Research Papers, 58(4): 442–453. doi: 10.1016/j.dsr.2011.02.004
    [89]
    Zhang Dongsheng, Lu Bo, Wang Chunsheng, et al. 2018. The first record of Ophioleila elegans (Echinodermata: Ophiuroidea) from a deep-sea seamount in the Northwest Pacific Ocean. Acta Oceanologica Sinica, 37(10): 180–184. doi: 10.1007/s13131-018-1323-0
    [90]
    Zhang Ruiyan, Wang Chunsheng, Zhou Yadong, et al. 2019. Morphology and molecular phylogeny of two new species in genus Freyastera (Asteroidea: Brisingida: Freyellidae), with a revised key to close species and ecological remarks. Deep-Sea Research Part I: Oceanographic Research Papers, 154: 103163. doi: 10.1016/j.dsr.2019.103163
    [91]
    Zhang Ruiyan, Zhou Yadong, Xiao Ning, et al. 2020. A new sponge-associated starfish, Astrolirus patricki sp. nov. (Asteroidea: Brisingida: Brisingidae), from the northwestern Pacific seamounts. PeerJ, 8(26): e9071. doi: 10.7717/peerj.9071
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (1075) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return