Citation: | Ya’nan Li, Jiangfeng Zhu, Xiaojie Dai, Dan Fu, Yong Chen. Using data-limited approaches to assess data-rich Indian Ocean bigeye tuna: Data quantity evaluation and critical information for management implications[J]. Acta Oceanologica Sinica, 2022, 41(3): 11-23. doi: 10.1007/s13131-021-1933-9 |
[1] |
Arnold L M, Heppell S S. 2015. Testing the robustness of data-poor assessment methods to uncertainty in catch and biology: a retrospective approach. ICES Journal of Marine Science, 72(1): 243–250. doi: 10.1093/icesjms/fsu077
|
[2] |
Beddington J R, Kirkwood G P. 2005. The estimation of potential yield and stock status using life-history parameters. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1453): 163–170. doi: 10.1098/rstb.2004.1582
|
[3] |
Berkson J, Thorson J T. 2015. The determination of data-poor catch limits in the United States: is there a better way?. ICES Journal of Marine Science, 72(1): 237–242. doi: 10.1093/icesjms/fsu085
|
[4] |
Beverton R J H, Holt S J. 1993. On the Dynamics of Exploited Fish Populations. Suffolk, UK: Springer Dordrecht, 35–38
|
[5] |
Bull B, Francis R I C C, Dunn A, et al. 2012. CASAL (C++ algorithmic stock assessment laboratory) user manual v2.30-2012/03/21. NIWA Technical Report 135. New Zealand, Wellington: The National Institute of Water and Atmospheric Research. http://docs.niwa.co.nz/library/public/NIWAtr135.pdf[2012-3-21/2020-6-1]
|
[6] |
Carruthers T R, Hordyk A R. 2018. The Data-Limited Methods Toolkit (DLMtool): an R package for informing management of data-limited populations. Methods in Ecology and Evolution, 9(12): 2388–2395. doi: 10.1111/2041-210X.13081
|
[7] |
Carruthers T R, Hordyk A R. 2020. Data-limited methods toolkit (DLMtool 5.4. 2). Vancouver, Canada: UBC. https://dlmtool.github.io/DLMtool/userguide/introduction.html[2020-2-24/ 2020-6-1]
|
[8] |
Carruthers T R, Kell L T, Butterworth D D S, et al. 2016. Performance review of simple management procedures. ICES Journal of Marine Science, 73(2): 464–482. doi: 10.1093/icesjms/fsv212
|
[9] |
Carruthers T R, Punt A E, Walters C J, et al. 2014. Evaluating methods for setting catch limits in data-limited fisheries. Fisheries Research, 153: 48–68. doi: 10.1016/j.fishres.2013.12.014
|
[10] |
Carruthers T R, Walters C J, McAllister M K. 2012. Evaluating methods that classify fisheries stock status using only fisheries catch data. Fisheries Research, 119–120: 66–79,
|
[11] |
Cope J M. 2013. Implementing a statistical catch-at-age model (Stock Synthesis) as a tool for deriving overfishing limits in data-limited situations. Fisheries Research, 142: 3–14,
|
[12] |
Cummings N J, Karnauskas M, Michaels W L, et al. 2014. Report of a GCFI workshop. Evaluation of current status and application of data-limited stock assessment methods in the larger Caribbean Region. Corpus Christi: Gulf and Caribbean Fisheries Institute. https://www.regions.noaa.gov/secar/wp-content/uploads/2013/06/66th-GCFI-2013-Data-Limited-Assessment-Workshop-Report-English-v26March2014.pdf[2013-11-4/2020-06-07]
|
[13] |
Dick E J, MacCall A D. 2010. Estimates of sustainable yield for 50 data-poor stocks in the Pacific Coast Groundfish Fishery Management Plan. NOAA-TM-NMFS-SWFSC-460. https://www.pcouncil.org/documents/2010/06/estimates-of-sustainable-yield-for-50-data-poor-stocks-in-the-pacific-coast-groundfish-fishery-management-plan-noaa-technical-memorandum-noaa-tm-nmfs-swfsc-460-june-2010.pdf/[2010-06-03/2019-12-23]
|
[14] |
Dick E J, MacCall A D. 2011. Depletion-Based Stock Reduction Analysis: a catch-based method for determining sustainable yields for data-poor fish stocks. Fisheries Research, 110(2): 331–341. doi: 10.1016/j.fishres.2011.05.007
|
[15] |
Doonan I, Large K, Dunn A, et al. 2016. Casal2: New Zealand’s integrated population modelling tool. Fisheries Research, 183: 498–505. doi: 10.1016/j.fishres.2016.04.024
|
[16] |
Fournier D, Archibald C P. 1982. A general theory for analyzing catch at age data. Canadian Journal of Fisheries and Aquatic Sciences, 39(8): 1195–1207. doi: 10.1139/f82-157
|
[17] |
Fournier D A, Hampton J, Sibert J R. 1998. MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Canadian Journal of Fisheries and Aquatic Sciences, 55(9): 2105–2116. doi: 10.1139/f98-100
|
[18] |
Froese R, Demirel N, Coro G, et al. 2017. Estimating fisheries reference points from catch and resilience. Fish and Fisheries, 18(3): 506–526. doi: 10.1111/faf.12190
|
[19] |
Froese R, Winker H, Coro G, et al. 2018. A new approach for estimating stock status from length frequency data. ICES Journal of Marine Science, 75(6): 2004–2015. doi: 10.1093/icesjms/fsy078
|
[20] |
Fu Dan. 2019. Preliminary Indian Ocean bigeye tuna stock assessment 1950–2018 (Stock Synthesis). IOTC-2019-WPTT21-61. Virtual: IOTC. https://www.iotc.org/meetings/22nd-working-party-tropical-tuna-wptt22-stock-assessment-meeting[2019-10-10/2020-6-1]
|
[21] |
Gedamke T, Hoenig J M. 2006. Estimating mortality from mean length data in nonequilibrium situations, with application to the assessment of goosefish. Transactions of the American Fisheries Society, 135(2): 476–487. doi: 10.1577/T05-153.1
|
[22] |
Geromont H F, Butterworth D S. 2015a. Generic management procedures for data-poor fisheries: forecasting with few data. ICES Journal of Marine Science, 72(1): 251–261. doi: 10.1093/icesjms/fst232
|
[23] |
Geromont H F, Butterworth D S. 2015b. Complex assessments or simple management procedures for efficient fisheries management: a comparative study. ICES Journal of Marine Science, 72(1): 262–274. doi: 10.1093/icesjms/fsu017
|
[24] |
Griffiths S P, Fay G. 2015. Integrating recreational fisheries data into stock assessment: implications for model performance and subsequent harvest strategies. Fisheries Management and Ecology, 22(3): 197–212. doi: 10.1111/fme.12117
|
[25] |
Gulland J A. 1971. Science and fishery management. ICES Journal of Marine Science, 33(3): 471–477. doi: 10.1093/icesjms/33.3.471
|
[26] |
Harford W J, Carruthers T R. 2017. Interim and long-term performance of static and adaptive management procedures. Fisheries Research, 190: 84–94. doi: 10.1016/j.fishres.2017.02.003
|
[27] |
Hilborn R, Walters C J. 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. Boston: Springer,
|
[28] |
Hordyk A. 2019. LBSPR: an R package for simulation and estimation using life-history ratios and length composition data. Vancouver, Canada: Blue Matter Science. https://cran.r-project.org/web/packages/LBSPR/vignettes/LBSPR.html[2019-6-18/2020-6-1]
|
[29] |
Hordyk A, Ono K, Valencia S, et al. 2015. A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES Journal of Marine Science, 72(1): 217–231. doi: 10.1093/icesjms/fsu004
|
[30] |
ICES. 2012. ICES Implementation of Advice for Data-limited Stocks in 2012 in its 2012 Advice. ICES CM 2012/ACOM 68. Copenhagen, Denmark: ICES
|
[31] |
IOTC Secretariat. 2020. Draft Resource Stock Status Summary Bigeye Tuna (BET: Thunnus Obesus). Rome: FAO
|
[32] |
ISSF. 2018. ISSF Technical Report 2018-15: 2018 ISSF Stock Assessment Workshop: Review of Current t-RFMO Practice in Stock Status Determinations. Washington D C, USA: International Seafood Sustainability Foundation
|
[33] |
Jardim E, Azevedo M, Brites N M. 2015. Harvest control rules for data limited stocks using length-based reference points and survey biomass indices. Fisheries Research, 171: 12–19. doi: 10.1016/j.fishres.2014.11.013
|
[34] |
Li B. 2011. Report of the sixteenth meeting of the scientific committee. CCSBT-EC/1108/BGD 01. Indonesia: CCSBT. https://www.ccsbt.org/en/system/files/resource/en/4e6855b3742de/BGD01-SC_ChairReport_of_SC16.pdf[2011-7-19/2020-6-1]
|
[35] |
MacCall A D. 2009. Depletion-corrected average catch: a simple formula for estimating sustainable yields in data-poor situations. ICES Journal of Marine Science, 66(10): 2267–2271. doi: 10.1093/icesjms/fsp209
|
[36] |
Martell S, Froese R. 2013. A simple method for estimating MSY from catch and resilience. Fish and Fisheries, 14(4): 504–514. doi: 10.1111/j.1467-2979.2012.00485.x
|
[37] |
Maunder M. 2014. Management strategy evaluation (MSE) implementation in Stock Synthesis: application to Pacific bluefin tuna. SAC-05-10b Management Strategy Evaluation. La Jolla, USA: IATTC. https://www.iattc.org/Meetings/Meetings2014/SAC-05/5thMeeting Scientific AdvisoryCommitteeENG.htm[2014-5-12/2020-6-1]
|
[38] |
Maunder M N, Crone P R, Punt A E, et al. 2017. Data conflict and weighting, likelihood functions and process error. Fisheries Research, 192: 1–4. doi: 10.1016/j.fishres.2017.03.006
|
[39] |
Maunder M N, Piner K R. 2017. Dealing with data conflicts in statistical inference of population assessment models that integrate information from multiple diverse data sets. Fisheries Research, 192: 16–27. doi: 10.1016/j.fishres.2016.04.022
|
[40] |
Maunder M N, Punt A E. 2013. A review of integrated analysis in fisheries stock assessment. Fisheries Research, 142: 61–74. doi: 10.1016/j.fishres.2012.07.025
|
[41] |
Methot R D Jr. 2009. Stock assessment: operational models in support of fisheries management. In: Beamish R J, Rothschild B J, eds. The Future of Fisheries Science in North America. Dordrecht: Springer, 137–165
|
[42] |
Methot R D Jr, Wetzel C R. 2013. Stock synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fisheries Research, 142: 86–99. doi: 10.1016/j.fishres.2012.10.012
|
[43] |
Methot R D Jr, Wetzel C R, Taylor I G, et al. 2020. Stock synthesis user manual version 3.30. 15. NOAA Processed Report NMFS-NWFSC-PR-2020-05. Washington, D C: U. S. Department of Commerce,
|
[44] |
Newman D, Berkson J, Suatoni L. 2015. Current methods for setting catch limits for data-limited fish stocks in the United States. Fisheries Research, 164: 86–93. doi: 10.1016/j.fishres.2014.10.018
|
[45] |
Newman D, Carruthers T, MacCall A, et al. 2014. Improving the science and management of data-limited fisheries: an evaluation of current methods and recommended approaches. Natural Resources Defense Council Report R: 14-09-B. New York: NRDC. https://www.nrdc.org/sites/default/files/improving-data-limited-fisheries-report.pdf[2014-10/2020-6-1]
|
[46] |
Punt A E, Butterworth D S, de Moor C L, et al. 2016. Management strategy evaluation: best practices. Fish and Fisheries, 17(2): 303–334. doi: 10.1111/faf.12104
|
[47] |
Punt A E, Dunn A, Elvarsson B Þ, et al. 2020. Essential features of the next-generation integrated fisheries stock assessment package: a perspective. Fisheries Research, 229: 105617. doi: 10.1016/j.fishres.2020.105617
|
[48] |
Rudd M B. 2018. LIME: length-based integrated mixed effects (LIME) assessment method. R Package Version 2.1. 0. Seattle: University of Washington. https://github.com/merrillrudd/ LIME[2017-6-25/2020-10-28]
|
[49] |
Rudd M B, Thorson J T. 2018. Accounting for variable recruitment and fishing mortality in length-based stock assessments for data-limited fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 75(7): 1019–1035. doi: 10.1139/cjfas-2017-0143
|
[50] |
Sagarese S R, Harford W J, Walter J F, et al. 2019. Lessons learned from data-limited evaluations of data-rich reef fish species in the Gulf of Mexico: implications for providing fisheries management advice for data-poor stocks. Canadian Journal of Fisheries and Aquatic Sciences, 76(9): 1624–1639. doi: 10.1139/cjfas-2017-0482
|
[51] |
Van Beveren E, Duplisea D, Castonguay M, et al. 2017. How catch underreporting can bias stock assessment of and advice for northwest Atlantic mackerel and a possible resolution using censored catch. Fisheries Research, 194: 146–154. doi: 10.1016/j.fishres.2017.05.015
|
[52] |
Walters C, Martell S J D. 2002. Stock assessment needs for sustainable fisheries management. Bulletin of Marine Science, 70(2): 629–638
|
[53] |
Zhou Shijie, Fu Dan, DeBruyn P, et al. 2019. Improving data limited methods for assessing Indian Ocean neritic tuna species. IOTC-2019-WPNT09-15. Victoria, Seychelles: CSIRO. https://iotc.org/meetings/9th-working-party-neritic-tunas-wpnt09[2019-7-1/2020-9-16]
|
[54] |
Zhu Jiangfeng, Kitakado T. 2019. Uncertainties in the 2019 stock assessment for Indian Ocean albacore tuna and suggestions of further researches in 2020 for improving the assessment and providing management advice. IOTC-2019-SC22-13. Karachi, Pakistan: IOTC Scientific Committee. https://iotc.org/documents/SC/22/13[2019-11-21/2020-9-16]
|