Volume 41 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
Xiaobo Wu, Yanling Zhao, Guijun Han, Wei Li, Qi Shao, Lige Cao, Chaoliang Li. Temporal-spatial oceanic variation in relation with the three typical Kuroshio paths south of Japan[J]. Acta Oceanologica Sinica, 2022, 41(2): 15-25. doi: 10.1007/s13131-021-1941-9
Citation: Xiaobo Wu, Yanling Zhao, Guijun Han, Wei Li, Qi Shao, Lige Cao, Chaoliang Li. Temporal-spatial oceanic variation in relation with the three typical Kuroshio paths south of Japan[J]. Acta Oceanologica Sinica, 2022, 41(2): 15-25. doi: 10.1007/s13131-021-1941-9

Temporal-spatial oceanic variation in relation with the three typical Kuroshio paths south of Japan

doi: 10.1007/s13131-021-1941-9
Funds:  The National Natural Science Foundation of China under contract No. 41876014.
More Information
  • Empirical orthogonal function (EOF) analysis was applied to a 50-year long time series of monthly mean positions of the Kuroshio path south of Japan from a regional reanalysis. Three leading EOF modes characterize the contributions from three typical paths of the Kuroshio meander: the typical large meander path, the offshore non-large meander path, and the nearshore non-large meander path, respectively. Accordingly, the spatial variation characteristics of oceanic anomaly fields can be depicted by their regression fields upon the associated three leading principal components (PCs), which are well-matched with the results of composite analysis corresponding to each period of the three typical Kuroshio paths. A new index for the typical large meander is defined by using the second leading PC, which is highly correlated with the Kushimoto-Uragami index. Spectral analysis of this new index series shows variability of the Kuroshio path south of Japan at time scales of about 7–8 years and 20 years.
  • loading
  • [1]
    Atlas R, Hoffman R N, Ardizzone J, et al. 2011. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bulletin of the American Meteorological Society, 92(2): 157–174. doi: 10.1175/2010BAMS2946.1
    [2]
    Awaji T, Akitomo K, Imasato N. 1991. Numerical study of shelf water motion driven by the Kuroshio: barotropic model. Journal of Physical Oceanography, 21(1): 11–27. doi: 10.1175/1520-0485(1991)021<0011:NSOSWM>2.0.CO;2
    [3]
    Chao S Y. 1984. Bimodality of the Kuroshio. Journal of Physical Oceanography, 14(1): 92–103. doi: 10.1175/1520-0485(1984)014<0092:BOTK>2.0.CO;2
    [4]
    Chao S Y, McCreary J P. 1982. A numerical study of the Kuroshio south of Japan. Journal of Physical Oceanography, 12(7): 679–693. doi: 10.1175/1520-0485(1982)012<0679:ANSOTK>2.0.CO;2
    [5]
    Douglass E M, Jayne S R, Bryan F O, et al. 2012. Kuroshio pathways in a climatologically forced model. Journal of Oceanography, 68(5): 625–639. doi: 10.1007/s10872-012-0123-y
    [6]
    Ebuchi N, Hanawa K. 2003. Influence of mesoscale eddies on variations of the Kuroshio path south of Japan. Journal of Oceanography, 59(1): 25–36. doi: 10.1023/A:1022856122033
    [7]
    Ezer T, Mellor G L. 2004. A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-level grids. Ocean Modelling, 6(3–4): 379–403,
    [8]
    Farge M. 1992. Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics, 24: 395–458. doi: 10.1146/annurev.fl.24.010192.002143
    [9]
    Han Guijun, Li Wei, Zhang Xuefeng, et al. 2011. A regional ocean reanalysis system for coastal waters of China and adjacent seas. Advances in Atmospheric Sciences, 28(3): 682–690. doi: 10.1007/s00376-010-9184-2
    [10]
    Han Guijun, Li Wei, Zhang Xuefeng, et al. 2013. A new version of regional ocean reanalysis for coastal waters of China and adjacent seas. Advances in Atmospheric Sciences, 30(4): 974–982. doi: 10.1007/s00376-012-2195-4
    [11]
    Hannachi A, Jolliffe I T, Stephenson D B. 2007. Empirical orthogonal functions and related techniques in atmospheric science: a review. International Journal of Climatology, 27(9): 1119–1152. doi: 10.1002/joc.1499
    [12]
    Hayasaki M, Kawamura R, Mori M, et al. 2013. Response of extratropical cyclone activity to the Kuroshio large meander in northern winter. Geophysical Research Letters, 40(11): 2851–2855. doi: 10.1002/grl.50546
    [13]
    Holgate S J, Matthews A, Woodworth P L, et al. 2013. New data systems and products at the permanent service for mean sea level. Journal of Coastal Research, 29(3): 493–504. doi: 10.2112/JCOASTRES-D-12-00175.1
    [14]
    Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [15]
    Kawabe M. 1985. Sea level variations at the Izu Islands and typical stable paths of the Kuroshio. Journal of the Oceanographical Society of Japan, 41(5): 307–326. doi: 10.1007/BF02109238
    [16]
    Kawabe M. 1987. Spectral properties of sea level and time scales of Kuroshio path variations. Journal of the Oceanographical Society of Japan, 43(2): 111–123. doi: 10.1007/BF02111887
    [17]
    Kawabe M. 1995. Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. Journal of Physical Oceanography, 25(12): 3103–3117. doi: 10.1175/1520-0485(1995)025<3103:VOCPVA>2.0.CO;2
    [18]
    Kelly K A, Small R J, Samelson R M, et al. 2010. Western boundary currents and frontal air-sea interaction: Gulf Stream and Kuroshio Extension. Journal of Climate, 23(21): 5644–5667. doi: 10.1175/2010JCLI3346.1
    [19]
    Li Wei, Xie Yuanfu, He Zhongjie, et al. 2008. Application of the multigrid data assimilation scheme to the China Seas’ temperature forecast. Journal of Atmospheric and Oceanic Technology, 25(11): 2106–2116. doi: 10.1175/2008JTECHO510.1
    [20]
    Li Rui, Zhang Zuowei, Wu Lixin. 2014. High-resolution modeling study of the Kuroshio path variations south of Japan. Advances in Atmospheric Sciences, 31(5): 1233–1244. doi: 10.1007/s00376-014-3230-4
    [21]
    Ma Libin. 2019. Response of ocean dynamics to multiple equilibria of the Kuroshio path south of Japan. Dynamics of Atmospheres and Oceans, 85: 57–71. doi: 10.1016/j.dynatmoce.2019.01.001
    [22]
    Mellor G L, Häkkinen S M, Ezer T, et al. 2002. A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. In: Pinardi N, Woods J, eds. Ocean Forecasting: Conceptual Basis and Applications. Berlin, Heidelberg: Springer, 55–72. doi: 10.1007/978-3-662-22648-3_4
    [23]
    Mitsudera H, Taguchi B, Waseda T, et al. 2006. Blocking of the Kuroshio large meander by baroclinic interaction with the Izu ridge. Journal of Physical Oceanography, 36(11): 2042–2059. doi: 10.1175/JPO2945.1
    [24]
    Mitsudera H, Waseda T, Yoshikawa Y, et al. 2001. Anticyclonic eddies and Kuroshio meander formation. Geophysical Research Letters, 28(10): 2025–2028. doi: 10.1029/2000GL012668
    [25]
    Miyama T, Miyazawa Y. 2013. Structure and dynamics of the sudden acceleration of Kuroshio off Cape Shionomisaki. Ocean Dynamics, 63(2–3): 265–281,
    [26]
    Miyazawa Y, Kagimoto T, Guo Xinyu, et al. 2008. The Kuroshio large meander formation in 2004 analyzed by an eddy-resolving ocean forecast system. Journal of Geophysical Research: Oceans, 113(C10): C10015. doi: 10.1029/2007JC004226
    [27]
    Miyazawa Y, Yamane S, Guo Xinyu, et al. 2005. Ensemble forecast of the Kuroshio meandering. Journal of Geophysical Research: Oceans, 110(C10): C10026. doi: 10.1029/2004JC002426
    [28]
    Nakamura H, Nishina A, Minobe S. 2012. Response of storm tracks to bimodal Kuroshio path states south of Japan. Journal of Climate, 25(21): 7772–7779. doi: 10.1175/JCLI-D-12-00326.1
    [29]
    Nakamura H, Yamashiro T, Nishina A, et al. 2006. Time-frequency variability of Kuroshio meanders in Tokara Strait. Geophysical Research Letters, 33(21): L21605. doi: 10.1029/2006GL027516
    [30]
    Nakata H, Funakoshi S, Nakamura M. 2000. Alternating dominance of postlarval sardine and anchovy caught by coastal fishery in relation to the Kuroshio meander in the Enshu-nada Sea. Fisheries Oceanography, 9(3): 248–258. doi: 10.1046/j.1365-2419.2000.00140.x
    [31]
    Nitani H. 1975. Variation of the Kuroshio south of Japan. Journal of the Oceanographical Society of Japan, 31(4): 154–173. doi: 10.1007/BF02107107
    [32]
    North G R, Bell T L, Cahalan R F, et al. 1982. Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review, 110(7): 699–706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
    [33]
    Qiu Bo, Chen Shuiming. 2005. Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. Journal of Physical Oceanography, 35(11): 2090–2103. doi: 10.1175/JPO2807.1
    [34]
    Qiu Bo, Miao Weifeng. 2000. Kuroshio path variations south of Japan: bimodality as a self-sustained internal oscillation. Journal of Physical Oceanography, 30(8): 2124–2137. doi: 10.1175/1520-0485(2000)030<2124:KPVSOJ>2.0.CO;2
    [35]
    Sekine Y, Fujita K. 1999. Why does the sea level difference between Kushimoto and Uragami show periods of large meander and non-large meander paths of the Kuroshio south of Japan?. Journal of Oceanography, 55(1–2): 43–51,
    [36]
    Solomon H. 1978. Occurrence of small “trigger” meanders in the Kuroshio off southern Kyushu. Journal of the Oceanographical Society of Japan, 34(3): 81–84. doi: 10.1007/BF02109256
    [37]
    Song Tao, Wang Zihe, Xie Pengfei, et al. 2020. A novel dual path gated recurrent unit model for sea surface salinity prediction. Journal of Atmospheric and Oceanic Technology, 37(2): 317–325. doi: 10.1175/JTECH-D-19-0168.1
    [38]
    Sugimoto S, Hanawa K. 2012. Relationship between the path of the Kuroshio in the south of Japan and the path of the Kuroshio Extension in the east. Journal of Oceanography, 68(1): 219–225. doi: 10.1007/s10872-011-0089-1
    [39]
    Sugimoto T, Ishimaru T, Kobayashi M. 1986. Circulation and water exchange in the anticyclonic gyre off Shikoku. Deep-Sea Research Part A: Oceanographic Research Papers, 33(11–12): 1641–1652,
    [40]
    Sugimoto S, Qiu B, Kojima A. 2020. Marked coastal warming off Tokai attributable to Kuroshio large meander. Journal of Oceanography, 76(2): 141–154. doi: 10.1007/s10872-019-00531-8
    [41]
    Taft B A. 1972. Characteristics of the flow of the Kuroshio south of Japan. In: Stommel H, Yoshida K, eds. Kuroshio—Its Physical Aspects. Tokyo, Japan: University of Tokyo Press, 165–216
    [42]
    Torrence C, Compo G P. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1): 61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
    [43]
    Tsujino H, Nishikawa S, Sakamoto K, et al. 2013. Effects of large-scale wind on the Kuroshio path south of Japan in a 60-year historical OGCM simulation. Climate Dynamics, 41(9–10): 2287–2318,
    [44]
    Usui N. 2019. Progress of studies on Kuroshio path variations south of Japan in the past decade. In: Nagai T, Saito H, Suzuki K, et al., eds. Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamics. Washington, D. C., USA: American Geophysical Union, 147–161. doi: 10.1002/9781119428428.ch9
    [45]
    Usui N, Tsujino H, Fujii Y, et al. 2006. Short-range prediction experiments of the Kuroshio path variabilities south of Japan. Ocean Dynamics, 56(5–6): 607–623,
    [46]
    Usui N, Tsujino H, Nakano H, et al. 2008. Formation process of the Kuroshio large meander in 2004. Journal of Geophysical Research: Oceans, 113(C8): C08047. doi: 10.1029/2007JC004675
    [47]
    Usui N, Tsujino H, Nakano H, et al. 2011. Decay mechanism of the 2004/05 Kuroshio large meander. Journal of Geophysical Research: Oceans, 116(C10): C10010. doi: 10.1029/2011JC007009
    [48]
    Usui N, Tsujino H, Nakano H, et al. 2013. Long-term variability of the Kuroshio path south of Japan. Journal of Oceanography, 69(6): 647–670. doi: 10.1007/s10872-013-0197-1
    [49]
    Wang Jia, Oey L Y. 2014. Inter-annual and decadal fluctuations of the Kuroshio in East China Sea and connection with surface fluxes of momentum and heat. Geophysical Research Letters, 41(23): 8538–8546. doi: 10.1002/2014GL062118
    [50]
    Wang Jia, Oey L Y. 2016. Seasonal exchanges of the Kuroshio and shelf waters and their impacts on the shelf currents of the East China Sea. Journal of Physical Oceanography, 46(5): 1615–1632. doi: 10.1175/JPO-D-15-0183.1
    [51]
    Wei Yanzhou, Huang Daji, Zhu Xiaohua. 2013. Interannual to decadal variability of the Kuroshio current in the East China Sea from 1955 to 2010 as indicated by in-situ hydrographic data. Journal of Oceanography, 69(5): 571–589. doi: 10.1007/s10872-013-0193-5
    [52]
    Xu Haiming, Tokinaga H, Xie Shangping. 2010. Atmospheric effects of the Kuroshio large meander during 2004–05. Journal of Climate, 23(17): 4704–4715. doi: 10.1175/2010JCLI3267.1
    [53]
    Yamagata T, Umatani S I. 1987. The capture of current meander by coastal geometry with possible application to the Kuroshio current. Tellus A: Dynamic Meteorology and Oceanography, 39(2): 161–169. doi: 10.3402/tellusa.v39i2.11749
    [54]
    Yamagata T, Umatani S I. 1989. Geometry-forced coherent structures as a model of the Kuroshio large meander. Journal of Physical Oceanography, 19(1): 130–138. doi: 10.1175/1520-0485(1989)019<0130:GFCSAA>2.0.CO;2
    [55]
    Yasuda T, Sakurai K. 2006. Interdecadal variability of the sea surface height around Japan. Geophysical Research Letters, 33(1): L01605. doi: 10.1029/2005GL024920
    [56]
    Zhang Qin, Wang Hui, Dong Junyu, et al. 2017. Prediction of sea surface temperature using long short-term memory. IEEE Geoscience and Remote Sensing Letters, 14(10): 1745–1749. doi: 10.1109/LGRS.2017.2733548
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (902) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return