Citation: | Yang Chen, Shouxian Zhu, Wenjing Zhang, Zirui Zhu, Muxi Bao. The model of tracing drift targets and its application in the South China Sea[J]. Acta Oceanologica Sinica, 2022, 41(4): 109-118. doi: 10.1007/s13131-021-1943-7 |
[1] |
Abi-Zeid I, Frost J R. 2005. SARPlan: a decision support system for Canadian search and rescue operations. European Journal of Operational Research, 162(3): 630–653. doi: 10.1016/j.ejor.2003.10.029
|
[2] |
Allen A A. 2005. Leeway divergence. Groton, CT: US Coast Guard Research and Development Center
|
[3] |
Allen A A, Plourde J V. 1999. Review of Leeway: Field Experiments and Implementation. Groton, CT: US Coast Guard Research and Development Center
|
[4] |
Breivik Ø, Allen A A. 2008. An operational search and rescue model for the Norwegian Sea and the North Sea. Journal of Marine Systems, 69(1–2): 99–113. doi: 10.1016/j.jmarsys.2007.02.010
|
[5] |
Breivik Ø, Allen A A, Maisondieu C, et al. 2011. Wind-induced drift of objects at sea: the leeway field method. Applied Ocean Research, 33(2): 100–109. doi: 10.1016/j.apor.2011.01.005
|
[6] |
Breivik Ø, Allen A A, Maisondieu C, et al. 2012. The leeway of shipping containers at different immersion levels. Ocean Dynamics, 62(5): 741–752. doi: 10.1007/s10236-012-0522-z
|
[7] |
Breivik Ø, Allen A A, Maisondieu C, et al. 2013. Advances in search and rescue at sea. Ocean Dynamics, 63(1): 83–88. doi: 10.1007/s10236-012-0581-1
|
[8] |
Brushett B A, Allen A A, King B A, et al. 2017. Application of leeway drift data to predict the drift of panga skiffs: case study of maritime search and rescue in the tropical Pacific. Applied Ocean Research, 67: 109–124. doi: 10.1016/j.apor.2017.07.004
|
[9] |
Chen Bingrui. 2005. A particle-tracing method and its application (in Chinese) [dissertation]. Shanghai: East China Normal University
|
[10] |
Chen Changsheng, Liu Hedong, Beardsley R C. 2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20(1): 159–186. doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
|
[11] |
Cho K H, Li Y, Wang H, et al. 2014. Development and validation of an operational search and rescue modeling system for the Yellow Sea and the East and South China Seas. Journal of Atmospheric and Oceanic Technology, 31(1): 197–215. doi: 10.1175/JTECH-D-13-00097.1
|
[12] |
Chorin A J. 1973. Numerical study of slightly viscous flow. Journal of Fluid Mechanics, 57(4): 785–796. doi: 10.1017/S0022112073002016
|
[13] |
Coppini G, Jansen E, Turrisi G, et al. 2016. A new search-and-rescue service in the Mediterranean Sea: a demonstration of the operational capability and an evaluation of its performance using real case scenarios. Natural Hazards and Earth System Sciences, 16(12): 2713–2727. doi: 10.5194/nhess-16-2713-2016
|
[14] |
Davidson F J M, Allen A, Brassington G B, et al. 2009. Applications of GODAE ocean current forecasts to search and rescue and ship routing. Oceanography, 22(3): 176–181. doi: 10.5670/oceanog.2009.76
|
[15] |
Di Maio A, Martin M V, Sorgente R. 2016. Evaluation of the search and rescue LEEWAY model in the Tyrrhenian Sea: a new point of view. Natural Hazards and Earth System Sciences, 16(8): 1979–1997. doi: 10.5194/nhess-16-1979-2016
|
[16] |
Ding Wenlan. 1986. Distribution of tides and tidal currents in the South China Sea. Oceanologia et Limnologia Sinica, 17(6): 468–480
|
[17] |
Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
|
[18] |
Fraser J M, Arthur Allen, Gary B, et al. 2009. Applications of GODAE ocean current forecasts to search and rescue and ship routing. Oceanography, 22(3): 176–181
|
[19] |
Gao Xiumin, Wei Zexun, Lv Xianqing, et al. 2014. Accuracy assessment of global ocean tide models in the South China Sea. Advances in Marine Science, 32(1): 1–14
|
[20] |
Hackett B, Breivik Ø, Wettre C. 2006. Forecasting the drift of objects and substances in the oceans. In: Chassignet E P, Verron J, eds. Ocean Weather Forecasting: An Integrated View of Oceanography. Dordrecht: Springer, 507–524
|
[21] |
Jiang Hualin, Sun Zhaochen, Li Li, et al. 2011. Determining maritime search area model based on Monte Carlo method. Journal of Waterway and Harbor, 32(4): 285–290
|
[22] |
Ni Zao, Qiu Zhiping, Su T C. 2010. On predicting boat drift for search and rescue. Ocean Engineering, 37(13): 1169–1179. doi: 10.1016/j.oceaneng.2010.05.009
|
[23] |
Richardson P L. 1997. Drifting in the wind: leeway error in shipdrift data. Deep-Sea Research Part I: Oceanographic Research Papers, 44(11): 1877–1903. doi: 10.1016/S0967-0637(97)00059-9
|
[24] |
Xiao Wenjun, Du Panjun, Gong Maoxun, et al. 2013. An operational search and rescue model system for Shanghai coast and adjacent seas. Marine Forecasts, 30(4): 79–86
|
[25] |
Zhang Jinfen, Teixeira Â, Soares C G, et al. 2017. Probabilistic modelling of the drifting trajectory of an object under the effect of wind and current for maritime search and rescue. Ocean Engineering, 129: 253–264. doi: 10.1016/j.oceaneng.2016.11.002
|
[26] |
Zhou Xiao, Cheng Liang, Zhang Fangli, et al. 2019. Integrating island spatial information and integer optimization for locating maritime search and rescue bases: a case study in the South China Sea. ISPRS International Journal of Geo-Information, 8(2): 88. doi: 10.3390/ijgi8020088
|
[27] |
Zhu Kui, Mu Lin, Tu Haiwen. 2019. Exploration of the wind-induced drift characteristics of typical Chinese offshore fishing vessels. Applied Ocean Research, 92: 101916. doi: 10.1016/j.apor.2019.101916
|