Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Xiongwei Niu, Pingchuan Tan, Weiwei Ding, Wei Wang, Yao Wei, Xiaodong Wei, Aiguo Ruan, Jie Zhang, Chunyang Wang, Yong Tang, Jiabiao Li. Oceanic crustal structure and tectonic origin of the southern Kyushu-Palau Ridge in the Philippine Sea[J]. Acta Oceanologica Sinica, 2022, 41(1): 39-49. doi: 10.1007/s13131-021-1978-9
Citation: Xiongwei Niu, Pingchuan Tan, Weiwei Ding, Wei Wang, Yao Wei, Xiaodong Wei, Aiguo Ruan, Jie Zhang, Chunyang Wang, Yong Tang, Jiabiao Li. Oceanic crustal structure and tectonic origin of the southern Kyushu-Palau Ridge in the Philippine Sea[J]. Acta Oceanologica Sinica, 2022, 41(1): 39-49. doi: 10.1007/s13131-021-1978-9

Oceanic crustal structure and tectonic origin of the southern Kyushu-Palau Ridge in the Philippine Sea

doi: 10.1007/s13131-021-1978-9
Funds:  The National Natural Science Foundation of China under contract Nos 91858214 and 41890811; the Scientific Research Fund of the Second Institute of Oceanography, MNR under contract No. HYGG2001; the National Natural Science Foundation of China under contract Nos 42006072, 41876060, 41776053 and 42076080; the National Program on Global Change and Air-Sea Interaction, MNR under contact No. GASI-02-PAC-DWZP02; the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. 311020018.
More Information
  • Author Bio:

    E-mail: wwding@sio.org.cn

  • Corresponding author: E-mail: tanpc@sio.org.cn; wwding@sio.org.cn
  • Received Date: 2021-12-01
  • Accepted Date: 2021-12-15
  • Available Online: 2021-12-21
  • Publish Date: 2022-01-10
  • A new high-resolution velocity model of the southern Kyushu-Palau Ridge (KPR) was derived from an active-source wide-angle seismic reflection/refraction profile. The result shows that the KPR crust can be divided into the upper crust with the P-wave velocity less than 6.1 m/s, and lower crust with P-wave velocity between 6.1 km/s and 7.2 km/s. The crustal thickness of the KPR reaches 12.0 km in the center, which gradually decreases to 5.0–6.0 km at sides. The velocity structure of the KPR is similar to the structures of the adjacent West Philippine Basin and Parece Vela Basin (PVB), indicating a typical oceanic crust. Isostatic analysis shows that some regional compensation occurs during the loading of the KPR, which implies that the KPR was built mainly by magmatism during the splitting of the Izu-Bonin-Mariana arc and the following back-arc seafloor spreading of the PVB during 30–28 Ma BP. The absence of the thick middle crust (6.0–6.5 km/s) and high velocity lower-crustal layers (7.2–7.6 km/s) suggest that arc magmatism plays a less important role in the KPR formation.
  • loading
  • [1]
    Arculus R J, Ishizuka O, Bogus K A, et al. 2015. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc. Nature Geoscience, 8(9): 728–733. doi: 10.1038/ngeo2515
    [2]
    Arisaka M, Shinohara M, Yamada T, et al. 2003. Seismic structure of uppermost mantle and crust beneath West Philippine Basin and Kyusyu-Palau Ridge by seafloor borehole seismometer, OBS and airgun experiment. In: Proceedings of American Geophysical Union, Fall Meeting 2003. San Francisco: American Geophysical Union.
    [3]
    Bloomer S H, Taylor B, Macleod C J, et al. 1995. Early arc volcanism and the ophiolite problem: a perspective from drilling in the western Pacific. In: Taylor B, Natland J, eds. Active Margins and Marginal Basins of the Western Pacific, Volume 88. Washington: AGU, 67–96
    [4]
    Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental crust: a global view. Journal of Geophysical Research: Solid Earth, 100(B6): 9761–9788. doi: 10.1029/95JB00259
    [5]
    Deschamps A, Lallemand S. 2002. The West Philippine Basin: an Eocene to early Oligocene back arc basin opened between two opposed subduction zones. Journal of Geophysical Research: Solid Earth, 107(B12): 2322
    [6]
    Dunn R A, Martinez F. 2011. Contrasting crustal production and rapid mantle transitions beneath back-arc ridges. Nature, 426(7329): 198–202
    [7]
    Eason D E, Dunn R A. 2015. Petrogenesis and structure of oceanic crust in the Lau back-arc basin. Earth and Planetary Science Letters, 429: 128–138. doi: 10.1016/j.jpgl.2015.07.065
    [8]
    Grevemeyer I, Kodaira S, Guo Fujie, et al. 2021. Structure of oceanic crust in back-arc basins modulated by mantle source heterogeneity. Geology, 49(4): 468–472. doi: 10.1130/G48407.1
    [9]
    Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4): 353–431. doi: 10.1016/S1367-9120(01)00069-4
    [10]
    Holbrook W S, Lizarralde D, McGeary S, et al. 1999. Structure and composition of the Aleutian Island arc and implications for continental crustal growth. Geology, 27(1): 31–34. doi: 10.1130/0091-7613(1999)027<0031:SACOTA>2.3.CO;2
    [11]
    Ishizuka O, Hickey-Vargas R, Arculus R J, et al. 2018. Age of Izu-Bonin-Mariana arc basement. Earth and Planetary Science Letters, 481: 80–90. doi: 10.1016/j.jpgl.2017.10.023
    [12]
    Ishizuka O, Tani K, Reagan M K, et al. 2011a. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth and Planetary Science Letters, 306(3–4): 229–240. doi: 10.1016/j.jpgl.2011.04.006
    [13]
    Ishizuka O, Taylor R N, Yuasa M, et al. 2011b. Making and breaking an island arc: a new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea. Geochemistry, Geophysics, Geosystems, 12(5): Q05005
    [14]
    Kennett J. 1982. Marine Geology. Englewood Cliffs: Prentice-Hall, 813
    [15]
    Kobayashi K, Kasuga S, Okino K. 1995. Shikoku basin and its margins. In: Taylor B, ed. Backarc Basins: Tectonics and Magmatism. Boston: Springer, 381–405
    [16]
    Martinez F, Taylor B. 2002. Mantle wedge control on back-arc crustal accretion. Nature, 416(6879): 417–420. doi: 10.1038/416417a
    [17]
    Muller M R, Robinson C J, Minshull T A, et al. 1997. Thin crust beneath ocean drilling program borehole 735B at the Southwest Indian Ridge?. Earth and Planetary Science Letters, 148(1–2): 93–107. doi: 10.1016/S0012-821X(97)00030-7
    [18]
    Murauchi S, Den N, Asano S, et al. 1968. Crustal structure of the Philippine Sea. Journal of Geophysical Research, 73(10): 3143–3171. doi: 10.1029/JB073i010p03143
    [19]
    Nishizawa A, Kaneda K, Katagiri Y, et al. 2007. Variation in crustal structure along the Kyushu-Palau Ridge at 15–21°N on the Philippine Sea plate based on seismic refraction profiles. Earth, Planets and Space, 59(6): e17–e20
    [20]
    Nishizawa A, Kaneda K, Oikawa M. 2016. Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate. Earth, Planets and Space, 68(1): 30
    [21]
    Okino K, Ohara Y, Kasuga S, et al. 1999. The Philippine Sea: new survey results reveal the structure and the history of the marginal basins. Geophysical Research Letters, 26(15): 2287–2290. doi: 10.1029/1999GL900537
    [22]
    Okino K, Shimakawa Y, Nagaoka S. 1994. Evolution of the Shikoku basin. Journal of Geomagnetism and Geoelectricity, 46(6): 463–479. doi: 10.5636/jgg.46.463
    [23]
    Reagan M K, Pearce J A, Petronotis K, et al. 2017. Subduction initiation and ophiolite crust: new insights from IODP drilling. International Geology Review, 59(11): 1439–1450. doi: 10.1080/00206814.2016.1276482
    [24]
    Richards M A, Lithgow-Bertelloni C. 1996. Plate motion changes, the Hawaiian-Emperor Bend, and the apparent success and failure of geodynamic models. Earth and Planetary Science Letters, 137(1–4): 19–27. doi: 10.1016/0012-821X(95)00209-U
    [25]
    Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67. doi: 10.1126/science.1258213
    [26]
    Stern R J, Bloomer S H. 1992. Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. GSA Bulletin, 104(12): 1621–1636. doi: 10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
    [27]
    Stern R J, Fouch M J, Klemperer S L. 2004. An overview of the Izu-Bonin-Mariana subduction factory. In: Eiler J, ed. Inside the Subduction Factory, Volume 138. Washington: American Geophysical Union, 175–222
    [28]
    Takahashi N, Kodaira S, Klemperer S L, et al. 2007. Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology, 35(3): 203–206. doi: 10.1130/G23212A.1
    [29]
    Takahashi N, Kodaira S, Tatsumi Y, et al. 2008. Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc-back-arc system. Journal of Geophysical Research, 113(B1): B01104
    [30]
    Talwani M, Worzel J L, Landisman M. 1959. Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. Journal of Geophysical Research, 64(1): 49–59. doi: 10.1029/JZ064i001p00049
    [31]
    Tozer B, Sandwell D T, Smith W H F, et al. 2019. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6(10): 1847–1864. doi: 10.1029/2019EA000658
    [32]
    White R S, McKenzie D, O’Nions R K. 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research, 97(B13): 19683–19715. doi: 10.1029/92JB01749
    [33]
    Zelt C A, Smith R B. 1992. Seismic traveltime inversion for 2-D crustal velocity structure. Geophysical Journal International, 108(1): 16–34. doi: 10.1111/j.1365-246X.1992.tb00836.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1383) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return