Volume 41 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
Lanman Li, Xuhua Cheng, Zhiyou Jing, Haijin Cao, Tao Feng. Submesoscale motions and their seasonality in the northern Bay of Bengal[J]. Acta Oceanologica Sinica, 2022, 41(4): 1-13. doi: 10.1007/s13131-021/1847-6
Citation: Lanman Li, Xuhua Cheng, Zhiyou Jing, Haijin Cao, Tao Feng. Submesoscale motions and their seasonality in the northern Bay of Bengal[J]. Acta Oceanologica Sinica, 2022, 41(4): 1-13. doi: 10.1007/s13131-021/1847-6

Submesoscale motions and their seasonality in the northern Bay of Bengal

doi: 10.1007/s13131-021/1847-6
Funds:  The National Key R&D Program of China under contract No. 2018YFA0605702; the National Natural Science Foundation of China under contract Nos 41876002 and 41776002.
More Information
  • Corresponding author: E-mail: xuhuacheng@hhu.edu.cn
  • Received Date: 2021-02-09
  • Accepted Date: 2021-05-29
  • Available Online: 2022-02-11
  • Publish Date: 2022-04-01
  • The unbalanced submesoscale motions and their seasonality in the northern Bay of Bengal (BoB) are investigated using outputs of the high resolution regional oceanic modeling system. Submesoscale motions in the forms of filaments and eddies are present in the upper mixed layer during the whole annual cycle. Submesoscale motions show an obvious seasonality, in which they are active during the winter and spring but weak during the summer and fall. Their seasonality is associated with the mixed layer instability that depends on the mixed layer depth (MLD). During the winter, the MLD provides a much greater reservoir of the available potential energy, which promotes mixed layer instability to develop active submesoscale motions. The variations of MLD are likely modulated by the larger scale motions and the influxes of freshwater. Further investigations imply that the MLD and the stratified barrier layer are combined to determine the vertical structure of the submesoscale motions. The shallow MLD and strong stratification below during the summer and fall seem to prevent the downward extension of submesoscale motions. But in spring when the weak stratification exists, the penetration depth exceeds the base of the barrier layer.
  • loading
  • [1]
    Akhil V P, Durand F, Lengaigne M, et al. 2014. A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal. Journal of Geophysical Research: Oceans, 119(6): 3926–3947. doi: 10.1002/2013JC009632
    [2]
    Babu M T, Kumar P S, Rao D P. 1991. A subsurface cyclonic eddy in the Bay of Bengal. Journal of Marine Research, 49(3): 403–410. doi: 10.1357/002224091784995846
    [3]
    Balaguru K, Chang Ping, Saravanan R, et al. 2012. Ocean barrier layers’ effect on tropical cyclone intensification. Proceedings of the National Academy of Sciences of the United States of America, 109(36): 14343–14347. doi: 10.1073/pnas.1201364109
    [4]
    Behara A, Vinayachandran P N. 2016. An OGCM study of the impact of rain and river water forcing on the Bay of Bengal. Journal of Geophysical Research: Oceans, 121(4): 2425–2446. doi: 10.1002/2015JC011325
    [5]
    Boccaletti G, Ferrari R, Fox-Kemper B. 2007. Mixed layer instabilities and restratification. Journal of Physical Oceanography, 37(9): 2228–2250. doi: 10.1175/JPO3101.1
    [6]
    Brannigan L, Marshall D P, Naveira-Garabato A, et al. 2015. The seasonal cycle of submesoscale flows. Ocean Modelling, 92: 69–84. doi: 10.1016/j.ocemod.2015.05.002
    [7]
    Buckingham C E, Garabato A C N, Thompson A F, et al. 2016. Seasonality of submesoscale flows in the ocean surface boundary layer. Geophysical Research Letters, 43(5): 2118–2126. doi: 10.1002/2016GL068009
    [8]
    Callies J, Ferrari R, Klymak J M, et al. 2015. Seasonality in submesoscale turbulence. Nature Communications, 6(1): 6862. doi: 10.1038/ncomms7862
    [9]
    Cao Haijin, Fox-Kemper B, Jing Zhiyou. 2021. Submesoscale eddies in the upper ocean of the kuroshio extension from high-resolution simulation: energy budget. Journal of Physical Oceanography, 51(7): 2181–2201. doi: 10.1175/JPO-D-20-0267.1
    [10]
    Capet X, Campos E J, Paiva A M. 2008a. Submesoscale activity over the Argentinian shelf. Geophysical Research Letters, 35(15): L15605. doi: 10.1029/2008GL034736
    [11]
    Capet X, McWilliams J C, Molemaker M J, et al. 2008b. Mesoscale to submesoscale transition in the California Current system. Part I: flow structure, eddy flux, and observational tests. Journal of Physical Oceanography, 38(1): 29–43. doi: 10.1175/2007JPO3671.1
    [12]
    Capet X, McWilliams J C, Molemaker M J, et al. 2008c. Mesoscale to submesoscale transition in the California Current system. Part II: frontal processes. Journal of Physical Oceanography, 38(1): 44–64. doi: 10.1175/2007JPO3672.1
    [13]
    Capet X, McWilliams J C, Molemaker M J, et al. 2008d. Mesoscale to submesoscale transition in the California Current system. Part III: energy balance and flux. Journal of Physical Oceanography, 38(10): 2256–2269. doi: 10.1175/2008JPO3810.1
    [14]
    Carton J A, Giese B S. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Review, 136(8): 2999–3017. doi: 10.1175/2007MWR1978.1
    [15]
    Chen Gengxin, Wang Dongxiao, Hou Yijun. 2012. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Continental Shelf Research, 47: 178–185. doi: 10.1016/j.csr.2012.07.011
    [16]
    Cheng Xuhua, McCreary J P, Qiu Bo, et al. 2018. Dynamics of eddy generation in the central Bay of Bengal. Journal of Geophysical Research: Oceans, 123(9): 6861–6875. doi: 10.1029/2018JC014100
    [17]
    Cheng Xuhua, Xie Shangping, McCreary J P, et al. 2013. Intraseasonal variability of sea surface height in the Bay of Bengal. Journal of Geophysical Research: Oceans, 118(2): 816–830. doi: 10.1002/jgrc.20075
    [18]
    Dandapat S, Gnanaseelan C, Parekh A. 2020. Impact of excess and deficit river runoff on Bay of Bengal upper ocean characteristics using an ocean general circulation model. Deep-Sea Research Part II: Topical Studies in Oceanography, 172: 104714. doi: 10.1016/j.dsr2.2019.104714
    [19]
    Dong Jihai, Fox-Kemper B, Zhang Hong, et al. 2020. The seasonality of submesoscale energy production, content, and cascade. Geophysical Research Letters, 47(6): e2020GL087388. doi: 10.1029/2020GL087388
    [20]
    Dong Jihai, Zhong Yisen. 2018. The spatiotemporal features of submesoscale processes in the northeastern South China Sea. Acta Oceanologica Sinica, 37(11): 8–18. doi: 10.1007/s13131-018-1277-2
    [21]
    Eigenheer A, Quadfasel D. 2000. Seasonal variability of the Bay of Bengal circulation inferred from TOPEX/Poseidon altimetry. Journal of Geophysical Research: Oceans, 105(C2): 3243–3252. doi: 10.1029/1999JC900291
    [22]
    Fox-Kemper B, Ferrari R. 2008. Parameterization of mixed layer eddies. Part II: prognosis and impact. Journal of Physical Oceanography, 38(6): 1166–1179. doi: 10.1175/2007JPO3788.1
    [23]
    Fox-Kemper B, Ferrari R, Hallberg R. 2008. Parameterization of mixed layer eddies. Part I: theory and diagnosis. Journal of Physical Oceanography, 38(6): 1145–1165. doi: 10.1175/2007JPO3792.1
    [24]
    Girishkumar M S, Ravichandran M, McPhaden M J. 2013. Temperature inversions and their influence on the mixed layer heat budget during the winters of 2006–2007 and 2007–2008 in the Bay of Bengal. Journal of Geophysical Research: Oceans, 118(5): 2426–2437. doi: 10.1002/jgrc.20192
    [25]
    Gula J, Molemaker M J, McWilliams J C. 2014. Submesoscale cold filaments in the Gulf Stream. Journal of Physical Oceanography, 44(10): 2617–2643. doi: 10.1175/JPO-D-14-0029.1
    [26]
    Han Weiqing, Lawrence D M, Webster P J. 2001. Dynamical response of equatorial Indian Ocean to intraseasonal winds: zonal flow. Geophysical Research Letters, 28(22): 4215–4218. doi: 10.1029/2001GL013701
    [27]
    Hoskins B J. 1982. The mathematical theory of frontogenesis. Annual Review of Fluid Mechanics, 14: 131–151. doi: 10.1146/annurev.fl.14.010182.001023
    [28]
    Hoskins B J, Bretherton F P. 1972. Atmospheric frontogenesis models: mathematical formulation and solution. Journal of the Atmospheric Sciences, 29(1): 11–37. doi: 10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2
    [29]
    Howden S D, Murtugudde R. 2001. Effects of river inputs into the Bay of Bengal. Journal of Geophysical Research: Oceans, 106(C9): 19825–19843. doi: 10.1029/2000JC000656
    [30]
    Jing Zhiyou, Fox-Kemper B, Cao Haijin, et al. 2021. Submesoscale fronts and their dynamical processes associated with symmetric instability in the Northwest Pacific subtropical ocean. Journal of Physical Oceanography, 51(1): 83–100. doi: 10.1175/JPO-D-20-0076.1
    [31]
    Jithin A K, Subeesh M P, Francis P A, et al. 2020. Intensification of tidally generated internal waves in the north-central Bay of Bengal. Scientific Reports, 10(1): 6059. doi: 10.1038/s41598-020-62679-4
    [32]
    Klein P, Lapeyre G. 2009. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annual Review of Marine Science, 1: 351–375. doi: 10.1146/annurev.marine.010908.163704
    [33]
    Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4): 363–403. doi: 10.1029/94RG01872
    [34]
    Lévy M, Resplandy L, Klein P, et al. 2012. Grid degradation of submesoscale resolving ocean models: Benefits for offline passive tracer transport. Ocean Modelling, 48: 1–9. doi: 10.1016/j.ocemod.2012.02.004
    [35]
    Lin Hongyang, Liu Zhiyu, Hu Jianyu, et al. 2020. Characterizing meso- to submesoscale features in the South China Sea. Progress in Oceanography, 188: 102420. doi: 10.1016/j.pocean.2020.102420
    [36]
    Luo Hao, Bracco A, Cardona Y, et al. 2016. Submesoscale circulation in the northern Gulf of Mexico: surface processes and the impact of the freshwater river input. Ocean Modelling, 101: 68–82. doi: 10.1016/j.ocemod.2016.03.003
    [37]
    Ma Tian, Cheng Xuhua, Qi Yiquan, et al. 2020. Interannual variability in the barrier layer and forcing mechanism in the eastern equatorial Indian Ocean and Bay of Bengal. Acta Oceanologica Sinica, 39(7): 19–31. doi: 10.1007/s13131-020-1575-3
    [38]
    Maes C. 2008. On the ocean salinity stratification observed at the eastern edge of the equatorial Pacific Warm Pool. Journal of Geophysical Research: Oceans, 113(C3): C03027. doi: 10.1029/2007JC004297
    [39]
    Mahadevan A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annual Review of Marine Science, 8: 161–184. doi: 10.1146/annurev-marine-010814-015912
    [40]
    Mahadevan A, Tandon A. 2006. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modelling, 14(3−4): 241–256. doi: 10.1016/j.ocemod.2006.05.006
    [41]
    McWilliams J C. 2016. Submesoscale currents in the ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2189): 20160117,
    [42]
    McWilliams J C. 2017. Submesoscale surface fronts and filaments: secondary circulation, buoyancy flux, and frontogenesis. Journal of Fluid Mechanics, 823: 391–432. doi: 10.1017/jfm.2017.294
    [43]
    Mensa J A, Garraffo Z, Griffa A, et al. 2013. Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dynamics, 63(8): 923–941. doi: 10.1007/s10236-013-0633-1
    [44]
    Molemaker M J, McWilliams J C, Capet X. 2010. Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. Journal of Fluid Mechanics, 654: 35–63. doi: 10.1017/S0022112009993272
    [45]
    Molemaker M J, McWilliams J C, Dewar W K. 2015. Submesoscale instability and generation of mesoscale anticyclones near a separation of the California undercurrent. Journal of Physical Oceanography, 45(3): 613–629. doi: 10.1175/JPO-D-13-0225.1
    [46]
    Narvekar J, Kumar S P. 2006. Seasonal variability of the mixed layer in the central Bay of Bengal and associated changes in nutrients and chlorophyll. Deep-Sea Research Part I: Oceanographic Research Papers, 53(5): 820–835. doi: 10.1016/j.dsr.2006.01.012
    [47]
    Neetu S, Lengaigne M, Vincent E M, et al. 2012. Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal. Journal of Geophysical Research: Oceans, 117(C12): C12020. doi: 10.1029/2012JC008433
    [48]
    Pham H T, Sarkar S. 2019. The role of turbulence in strong submesoscale fronts of the Bay of Bengal. Deep-Sea Research Part II: Topical Studies in Oceanography, 168: 104644. doi: 10.1016/j.dsr2.2019.104644
    [49]
    Phaniharam S A, Chintam V, Baggu G, et al. 2020. Study of internal wave characteristics off northwest Bay of Bengal using synthetic aperture radar. Natural Hazards, 104(3): 2451–2460. doi: 10.1007/s11069-020-04280-6
    [50]
    Qiu Yun, Cai Wenju, Li Li, et al. 2012. Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean Dipole. Geophysical Research Letters, 39(8): L08605. doi: 10.1029/2012GL051441
    [51]
    Qiu Bo, Chen Shuiming, Klein P, et al. 2014. Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. Journal of Physical Oceanography, 44(12): 3079–3098. doi: 10.1175/JPO-D-14-0071.1
    [52]
    Qiu Yun, Li Li, Yu Weidong, et al. 2007. Annual and interannual variations of sea-level anomaly in the Bay of Bengal and the Andaman Sea. Acta Oceanologica Sinica, 26(6): 13–29
    [53]
    Rahaman H, Ravichandran M, Sengupta D, et al. 2014. Development of a regional model for the North Indian Ocean. Ocean Modelling, 75: 1–19. doi: 10.1016/j.ocemod.2013.12.005
    [54]
    Ramachandran S, Tandon A. 2020. Generation of submesoscale temperature inversions below salinity fronts in the Bay of Bengal. Journal of Geophysical Research: Oceans, 125(12): e2020JC016278,
    [55]
    Ramachandran S, Tandon A, Mackinnon J, et al. 2018. Submesoscale processes at shallow salinity fronts in the Bay of Bengal: observations during the winter monsoon. Journal of Physical Oceanography, 48(3): 479–509. doi: 10.1175/JPO-D-16-0283.1
    [56]
    Rao R R, Sivakumar R. 2003. Seasonal variability of sea surface salinity and salt budget of the mixed layer of the North Indian Ocean. Journal of Geophysical Research, 108(C1): 3009. doi: 10.1029/2001JC000907
    [57]
    Sarkar S, Pham H T, Ramachandran S, et al. 2016. The interplay between submesoscale instabilities and turbulence in the surface layer of the Bay of Bengal. Oceanography, 29(2): 146–157. doi: 10.5670/oceanog.2016.47
    [58]
    Schott F A, Xie Shangping, McCreary J P Jr. 2009. Indian Ocean circulation and climate variability. Reviews of Geophysics, 47(1): RG1002. doi: 10.1029/2007RG000245
    [59]
    Sengupta D, Goddalehundi B R, Anitha D S. 2008. Cyclone-induced mixing does not cool SST in the post-monsoon north Bay of Bengal. Atmospheric Science Letters, 9(1): 1–6. doi: 10.1002/asl.162
    [60]
    Sengupta D, Raj G N B, Ravichandran M, et al. 2016. Near-surface salinity and stratification in the north Bay of Bengal from moored observations. Geophysical Research Letters, 43(9): 4448–4456. doi: 10.1002/2016GL068339
    [61]
    Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404. doi: 10.1016/j.ocemod.2004.08.002
    [62]
    Shetye S R. 1993. The movement and implications of the Ganges-Brahmaputra runoff on entering the Bay of Bengal. Current Science, 64(1): 32–38
    [63]
    Somayajulu Y K, Murty V S N, Sarma Y V B. 2003. Seasonal and inter-annual variability of surface circulation in the Bay of Bengal from TOPEX/Poseidon altimetry. Deep-Sea Research Part II: Topical Studies in Oceanography, 50(5): 867–880. doi: 10.1016/S0967-0645(02)00610-0
    [64]
    Su Zhan, Wang Jinbo, Klein P, et al. 2018. Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9(1): 775. doi: 10.1038/s41467-018-02983-w
    [65]
    Suresh I, Vialard J, Lengaigne M, et al. 2013. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide. Geophysical Research Letters, 40(21): 5740–5744. doi: 10.1002/2013GL058312
    [66]
    Tazkia A R, Krien Y, Durand F, et al. 2017. Seasonal modulation of M2 tide in the northern Bay of Bengal. Continental Shelf Research, 137: 154–162. doi: 10.1016/j.csr.2016.12.008
    [67]
    Thadathil P, Muraleedharan P M, Rao R R, et al. 2007. Observed seasonal variability of barrier layer in the Bay of Bengal. Journal of Geophysical Research: Oceans, 112(C2): C02009. doi: 10.1029/2006JC003651
    [68]
    Thadathil P, Suresh I, Gautham S, et al. 2016. Surface layer temperature inversion in the Bay of Bengal: main characteristics and related mechanisms. Journal of Geophysical Research: Oceans, 121(8): 5682–5696. doi: 10.1002/2016JC011674
    [69]
    Thomas L N, Tandon A, Mahadevan A. 2008. Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, 177: 17–38. doi: 10.1029/177GM04
    [70]
    Torres H S, Klein P, Menemenlis D, et al. 2018. Partitioning ocean motions into balanced motions and internal gravity waves: a modeling study in anticipation of future space missions. Journal of Geophysical Research: Oceans, 123(11): 8084–8105. doi: 10.1029/2018JC014438
    [71]
    Vialard J, Shenoi S S C, McCreary J P, et al. 2009. Intraseasonal response of the northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation. Geophysical Research Letters, 36(14): L14606. doi: 10.1029/2009GL038450
    [72]
    Vinayachandran P N, Murty V S N, Babu V R. 2002. Observations of barrier layer formation in the Bay of Bengal during summer monsoon. Journal of Geophysical Research: Oceans, 107(C12): 8018. doi: 10.1029/2001JC000831
    [73]
    Wang Shengpeng, Jing Zhao, Liu Hailong, et al. 2018. Spatial and seasonal variations of submesoscale eddies in the eastern tropical Pacific Ocean. Journal of Physical Oceanography, 48(1): 101–116. doi: 10.1175/JPO-D-17-0070.1
    [74]
    Woodruff S D, Worley S J, Lubker S J, et al. 2011. ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological archive. International Journal of Climatology, 31(7): 951–967. doi: 10.1002/joc.2103
    [75]
    Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. Journal of Physical Oceanography, 47(4): 895–907. doi: 10.1175/JPO-D-16-0256.1
    [76]
    Zhang Zhiwei, Zhang Yuchen, Qiu Bo, et al. 2020. Spatiotemporal characteristics and generation mechanisms of submesoscale currents in the northeastern South China Sea revealed by numerical simulations. Journal of Geophysical Research: Oceans, 125(2): e2019JC015404. doi: 10.1029/2019JC015404
  • supplement-lilanman.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (458) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return