Volume 41 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
Xiaoli Chen, Chunxia Zhou, Lei Zheng, Mingci Li, Yong Liu, Tingting Liu. Arctic summer sea ice phenology including ponding from 1982 to 2017[J]. Acta Oceanologica Sinica, 2022, 41(9): 169-181. doi: 10.1007/s13131-022-1993-5
Citation: Xiaoli Chen, Chunxia Zhou, Lei Zheng, Mingci Li, Yong Liu, Tingting Liu. Arctic summer sea ice phenology including ponding from 1982 to 2017[J]. Acta Oceanologica Sinica, 2022, 41(9): 169-181. doi: 10.1007/s13131-022-1993-5

Arctic summer sea ice phenology including ponding from 1982 to 2017

doi: 10.1007/s13131-022-1993-5
Funds:  The National Key Research and Development Program of China under contract No. 2018YFC1406102; the Funds for the Distinguished Young Scientists of Hubei Province (China) under contract No. 2019CFA057; the National Natural Science Foundation of China under contract Nos 41941010 and 41776200.
More Information
  • Corresponding author: E-mail: zhoucx@whu.edu.cn
  • Received Date: 2021-06-26
  • Accepted Date: 2021-11-20
  • Available Online: 2022-04-21
  • Publish Date: 2022-08-31
  • Information on the Arctic sea ice climate indicators is crucial to business strategic planning and climate monitoring. Data on the evolvement of the Arctic sea ice and decadal trends of phenology factors during melt season are necessary for climate prediction under global warming. Previous studies on Arctic sea ice phenology did not involve melt ponds that dramatically lower the ice surface albedo and tremendously affect the process of sea ice surface melt. Temporal means and trends of the Arctic sea ice phenology from 1982 to 2017 were examined based on satellite-derived sea ice concentration and albedo measurements. Moreover, the timing of ice ponding and two periods corresponding to it were newly proposed as key stages in the melt season. Therefore, four timings, i.e., date of snow and ice surface melt onset (MO), date of pond onset (PO), date of sea ice opening (DOO), and date of sea ice retreat (DOR); and three durations, i.e., melt pond formation period (MPFP, i.e., MO–PO), melt pond extension period (MPEP, i.e., PO–DOR), and seasonal loss of ice period (SLIP, i.e., DOO–DOR), were used. PO ranged from late April in the peripheral seas to late June in the central Arctic Ocean in Bootstrap results, whereas the pan-Arctic was observed nearly 4 days later in NASA Team results. Significant negative trends were presented in the MPEP in the Hudson Bay, the Baffin Bay, the Greenland Sea, the Kara and Barents seas in both results, indicating that the Arctic sea ice undergoes a quick transition from ice to open water, thereby extending the melt season year to year. The high correlation coefficient between MO and PO, MPFP illustrated that MO predominates the process of pond formation.
  • loading
  • [1]
    Andersen S, Tonboe R, Kaleschke L, et al. 2007. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice. Journal of Geophysical Research: Oceans, 112(C8): C08004. doi: 10.1029/2006JC003543
    [2]
    Anderson M R. 1997. Determination of a melt-onset date for Arctic sea-ice regions using passive-microwave data. Annals of Glaciology, 25: 382–387. doi: 10.3189/S0260305500014324
    [3]
    Anderson M, Bliss A C, Drobot S. 2019. Snow melt onset over Arctic sea ice from SMMR and SSM/I-SSMIS brightness temperatures, version 4. Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center,
    [4]
    Bi Haibo, Zhang Jinlun, Wang Yunhe, et al. 2018. Arctic sea ice volume changes in terms of age as revealed from satellite observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(7): 2223–2237. doi: 10.1109/JSTARS.2018.2823735
    [5]
    Bliss A C, Anderson M R. 2018. Arctic sea ice melt onset timing from passive microwave-based and surface air temperature-based methods. Journal of Geophysical Research: Atmospheres, 123(17): 9063–9080. doi: 10.1029/2018JD028676
    [6]
    Bliss A C, Miller J A, Meier W N. 2017. Comparison of passive microwave-derived early melt onset records on Arctic sea ice. Remote Sensing, 9(3): 199. doi: 10.3390/rs9030199
    [7]
    Bliss A C, Steele M, Peng Ge, et al. 2019. Regional variability of Arctic sea ice seasonal change climate indicators from a passive microwave climate data record. Environmental Research Letters, 14(4): 045003. doi: 10.1088/1748-9326/aafb84
    [8]
    Cavalieri D J, Gloersen P, Campbell W J. 1984. Determination of sea ice parameters with the Nimbus 7 SMMR. Journal of Geophysical Research: Atmospheres, 89(D4): 5355–5369. doi: 10.1029/JD089iD04p05355
    [9]
    Cavalieri D J, Parkinson C L. 2012. Arctic sea ice variability and trends, 1979-2010. The Cryosphere, 6(4): 881–889. doi: 10.5194/tc-6-881-2012
    [10]
    Comiso J C. 1995. SSM/I sea ice concentrations using the bootstrap algorithm. Greenbelt: NASA
    [11]
    Comiso J C. 2012. Large decadal decline of the Arctic multiyear ice cover. Journal of Climate, 25(4): 1176–1193. doi: 10.1175/JCLI-D-11-00113.1
    [12]
    Comiso J C, Cavalieri D J, Parkinson C L, et al. 1997. Passive microwave algorithms for sea ice concentration: a comparison of two techniques. Remote Sensing of Environment, 60(3): 357–384. doi: 10.1016/S0034-4257(96)00220-9
    [13]
    Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35(1): L01703. doi: 10.1029/2007GL031972
    [14]
    Curry J A, Schramm J L, Ebert E E. 1995. Sea ice-albedo climate feedback mechanism. Journal of Climate, 8(2): 240–247. doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
    [15]
    Flocco D, Feltham D L, Bailey E, et al. 2015. The refreezing of melt ponds on Arctic sea ice. Journal of Geophysical Research: Oceans, 120(2): 647–659. doi: 10.1002/2014JC010140
    [16]
    Flocco D, Schroeder D, Feltham D L, et al. 2012. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. Journal of Geophysical Research: Oceans, 117(C9): C09032
    [17]
    Fors A S, Divine D V, Doulgeris A P, et al. 2017. Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery. The Cryosphere, 11(2): 755–771. doi: 10.5194/tc-11-755-2017
    [18]
    Frey K E, Moore G W K, Cooper L W, et al. 2015. Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic Region. Progress in Oceanography, 136: 32–49. doi: 10.1016/j.pocean.2015.05.009
    [19]
    Grenfell T C, Perovich D K. 2004. Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment. Journal of Geophysical Research: Oceans, 109(C1): C01001. doi: 10.1029/2003jc001866
    [20]
    Holland M M, Bailey D A, Briegleb B P, et al. 2012. Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice. Journal of Climate, 25(5): 1413–1430. doi: 10.1175/JCLI-D-11-00078.1
    [21]
    Holland M M, Bitz C M, Tremblay B. 2006. Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters, 33(23): L23503. doi: 10.1029/2006GL028024
    [22]
    Huang Wenfeng, Lu Peng, Lei Ruibo, et al. 2016. Melt pond distribution and geometry in high Arctic sea ice derived from aerial investigations. Annals of Glaciology, 57(73): 105–118. doi: 10.1017/aog.2016.30
    [23]
    Hunke E C, Bitz C M. 2009. Age characteristics in a multidecadal Arctic sea ice simulation. Journal of Geophysical Research: Oceans, 114(C8): C08013. doi: 10.1029/2008JC005186
    [24]
    Hunke E C, Hebert D A, Lecomte O. 2013. Level-ice melt ponds in the Los Alamos sea ice model, CICE. Ocean Modelling, 71: 26–42. doi: 10.1016/j.ocemod.2012.11.008
    [25]
    Istomina L, Heygster G, Huntemann M, et al. 2015a. Melt pond fraction and spectral sea ice albedo retrieval from MERIS data-Part 2: case studies and trends of sea ice albedo and melt ponds in the Arctic for years 2002–2011. The Cryosphere, 9(4): 1567–1578. doi: 10.5194/tc-9-1567-2015
    [26]
    Istomina L, Heygster G, Huntemann M, et al. 2015b. Melt pond fraction and spectral sea ice albedo retrieval from MERIS data-Part 1: validation against in situ, aerial, and ship cruise data. The Cryosphere, 9(4): 1551–1566. doi: 10.5194/tc-9-1551-2015
    [27]
    Kern S, Lavergne T, Notz D, et al. 2020. Satellite passive microwave sea-ice concentration data set inter-comparison for Arctic summer conditions. The Cryosphere, 14(7): 2469–2493. doi: 10.5194/tc-14-2469-2020
    [28]
    Key J, Wang Xuanji, Liu Yinghui, et al. 2016. The AVHRR polar pathfinder climate data records. Remote Sensing, 8(3): 167. doi: 10.3390/rs8030167
    [29]
    Kim J M, Sohn B J, Lee S M, et al. 2020. Differences between ICESat and CryoSat-2 sea ice thicknesses over the Arctic: consequences for analyzing the ice volume trend. Journal of Geophysical Research: Atmospheres, 125(22): e2020JD033103. doi: 10.1029/2020JD033103
    [30]
    Kouki K, Anttila K, Manninen T, et al. 2019. Intercomparison of snow melt onset date estimates from optical and microwave satellite instruments over the northern hemisphere for the period 1982–2015. Journal of Geophysical Research: Atmospheres, 124(21): 11205–11219. doi: 10.1029/2018JD030197
    [31]
    Kumar A, Yadav J, Mohan R. 2021. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: ocean and atmospheric implications. Science of the Total Environment, 753: 142046. doi: 10.1016/j.scitotenv.2020.142046
    [32]
    Kwok R. 2018. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environmental Research Letters, 13(10): 105005. doi: 10.1088/1748-9326/aae3ec
    [33]
    Kwok R, Cunningham G F. 2015. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2045): 20140157,
    [34]
    Kwok R, Cunningham G F, Wensnahan M, et al. 2009. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. Journal of Geophysical Research: Oceans, 114(C7): C07005. doi: 10.1029/2009JC005312
    [35]
    Landy J C, Ehn J K, Barber D G. 2015. Albedo feedback enhanced by smoother Arctic sea ice. Geophysical Research Letters, 42(24): 10714–10720. doi: 10.1002/2015GL066712
    [36]
    Lavergne T, Sørensen A M, Kern S, et al. 2019. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. The Cryosphere, 13(1): 49–78. doi: 10.5194/tc-13-49-2019
    [37]
    Lei Ruibo, Li Zhijun, Li Na, et al. 2012. Crucial physical characteristics of sea ice in the Arctic section of 143°–180°W during August and early September 2008. Acta Oceanologica Sinica, 31(4): 65–75. doi: 10.1007/s13131-012-0221-0
    [38]
    Lei Ruibo, Tian-Kunze X, Leppäranta M, et al. 2016. Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific sector of Arctic Ocean during 1982–2009. Journal of Geophysical Research: Oceans, 121(8): 5470–5486. doi: 10.1002/2016JC011831
    [39]
    Li Lanyu, Ke Changqing, Xie Hongjie, et al. 2017b. Aerial observations of sea ice and melt ponds near the North Pole during CHINARE2010. Acta Oceanologica Sinica, 36(1): 64–72. doi: 10.1007/s13131-017-0994-2
    [40]
    Li Haiyan, Perrie W, Li Qun, et al. 2017a. Estimation of melt pond fractions on first year sea ice using compact polarization SAR. Journal of Geophysical Research: Oceans, 122(10): 8145–8166. doi: 10.1002/2017JC013248
    [41]
    Li Qing, Zhou Chunxia, Zheng Lei, et al. 2020. Monitoring evolution of melt ponds on first-year and multiyear sea ice in the Canadian Arctic Archipelago with optical satellite data. Annals of Glaciology, 61(82): 154–163. doi: 10.1017/aog.2020.24
    [42]
    Light B, Perovich D K, Webster M A, et al. 2015. Optical properties of melting first-year Arctic sea ice. Journal of Geophysical Research: Oceans, 120(11): 7657–7675. doi: 10.1002/2015JC011163
    [43]
    Lindsay R, Schweiger A. 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9(1): 269–283. doi: 10.5194/tc-9-269-2015
    [44]
    Lu Peng, Cao Xiaowei, Wang Qingkai, et al. 2018a. Impact of a surface ice lid on the optical properties of melt ponds. Journal of Geophysical Research: Oceans, 123(11): 8313–8328. doi: 10.1029/2018JC014161
    [45]
    Lu Peng, Leppäranta M, Cheng Bin, et al. 2018b. The color of melt ponds on Arctic sea ice. The Cryosphere, 12(4): 1331–13455. doi: 10.5194/tc-12-1331-2018
    [46]
    Ma Y P, Sudakov I, Strong C, et al. 2019. Ising model for melt ponds on Arctic sea ice. New Journal of Physics, 21(6): 063029. doi: 10.1088/1367-2630/ab26db
    [47]
    Mahmud M S, Howell S E L, Geldsetzer T, et al. 2016. Detection of melt onset over the northern Canadian Arctic Archipelago sea ice from RADARSAT, 1997–2014. Remote Sensing of Environment, 178: 59–69. doi: 10.1016/j.rse.2016.03.003
    [48]
    Markus T, Cavalieri D J, Tschudi M A, et al. 2003. Comparison of aerial video and Landsat 7 data over ponded sea ice. Remote Sensing of Environment, 86(4): 458–469. doi: 10.1016/S0034-4257(03)00124-X
    [49]
    Markus T, Stroeve J C, Miller J. 2009. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. Journal of Geophysical Research: Oceans, 114(C12): C12024. doi: 10.1029/2009JC005436
    [50]
    Maslanik J A, Fowler C, Stroeve J, et al. 2007. A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters, 34(24): L24501. doi: 10.1029/2007GL032043
    [51]
    Matthews J L, Peng Ge, Meier W N, et al. 2020. Sensitivity of Arctic sea ice extent to sea ice concentration threshold choice and its implication to ice coverage decadal trends and statistical projections. Remote Sensing, 12(5): 807. doi: 10.3390/rs12050807
    [52]
    Meier W N, Peng Ge, Scott D J, et al. 2014. Verification of a new NOAA/NSIDC passive microwave sea-ice concentration climate record. Polar Research, 33(1): 21004. doi: 10.3402/polar.v33.21004
    [53]
    Nicolaus M, Katlein C. 2013. Mapping radiation transfer through sea ice using a remotely operated vehicle (ROV). The Cryosphere, 7(3): 763–777. doi: 10.5194/tc-7-763-2013
    [54]
    Onarheim I H, Eldevik T, Smedsrud L H, et al. 2018. Seasonal and regional manifestation of Arctic sea ice loss. Journal of Climate, 31(12): 4917–4932. doi: 10.1175/JCLI-D-17-0427.1
    [55]
    Pegau W S, Paulson C A. 2001. The albedo of Arctic leads in summer. Annals of Glaciology, 33: 221–224. doi: 10.3189/172756401781818833
    [56]
    Peng Ge, Meier W N. 2018. Temporal and regional variability of Arctic sea-ice coverage from satellite data. Annals of Glaciology, 59(76pt2): 191–200. doi: 10.1017/aog.2017.32
    [57]
    Peng Ge, Steele M, Bliss A C, et al. 2018. Temporal means and variability of Arctic sea ice melt and freeze season climate indicators using a satellite climate data record. Remote Sensing, 10(9): 1328. doi: 10.3390/rs10091328
    [58]
    Perovich D K. 2018. Sunlight, clouds, sea ice, albedo, and the radiative budget: the umbrella versus the blanket. The Cryosphere, 12(6): 2159–2165. doi: 10.5194/tc-12-2159-2018
    [59]
    Perovich D K, Nghiem S V, Markus T, et al. 2007. Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice-ocean system. Journal of Geophysical Research: Oceans, 112(C3): C03005. doi: 10.1029/2006JC003558
    [60]
    Perovich D K, Polashenski C. 2012. Albedo evolution of seasonal Arctic sea ice. Geophysical Research Letters, 39(8): L08501
    [61]
    Perovich D K, Richter-Menge J A, Tucker III W B. 2001. Seasonal changes in Arctic sea-ice morphology. Annals of Glaciology, 33: 171–176. doi: 10.3189/172756401781818716
    [62]
    Perovich D K, Tucker III W B, Ligett K A. 2002. Aerial observations of the evolution of ice surface conditions during summer. Journal of Geophysical Research: Oceans, 107(C10): 8048. doi: 10.1029/2000JC000449
    [63]
    Polashenski C, Perovich D, Courville Z. 2012. The mechanisms of sea ice melt pond formation and evolution. Journal of Geophysical Research: Oceans, 117(C1): C01001
    [64]
    Rösel A, Kaleschke L. 2012. Exceptional melt pond occurrence in the years 2007 and 2011 on the Arctic sea ice revealed from MODIS satellite data. Journal of Geophysical Research: Oceans, 117(C5): C05018
    [65]
    Rösel A, Kaleschke L, Birnbaum G. 2012. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network. The Cryosphere, 6(2): 431–446. doi: 10.5194/tc-6-431-2012
    [66]
    Scharien R K, Landy J, Barber D G. 2014. First-year sea ice melt pond fraction estimation from dual-polarisation C-band SAR-Part 1: in situ observations. The Cryosphere, 8(6): 2147–2162. doi: 10.5194/tc-8-2147-2014
    [67]
    Scott F, Feltham D L. 2010. A model of the three-dimensional evolution of Arctic melt ponds on first-year and multiyear sea ice. Journal of Geophysical Research: Oceans, 115(C12): C12064. doi: 10.1029/2010JC006156
    [68]
    Shu Qi, Wang Qiang, Song Zhenya, et al. 2021. The poleward enhanced Arctic Ocean cooling machine in a warming climate. Nature Communications, 12(1): 2966. doi: 10.1038/s41467-021-23321-7
    [69]
    Singh R K, Singh T V, Singh U S. 2021. Long-term observation of the Arctic sea ice melt onset from microwave radiometry. Journal of the Indian Society of Remote Sensing, 49(2): 357–364. doi: 10.1007/s12524-020-01220-6
    [70]
    Skagseth Ø, Eldevik T, Årthun M, et al. 2020. Reduced efficiency of the Barents Sea cooling machine. Nature Climate Change, 10(7): 661–666. doi: 10.1038/s41558-020-0772-6
    [71]
    Skyllingstad E D, Polashenski C. 2018. Estimated heat budget during summer melt of Arctic first-year sea ice. Geophysical Research Letters, 45(21): 11789–11797. doi: 10.1029/2018GL080349
    [72]
    Stammerjohn S, Massom R, Rind D, et al. 2012. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophysical Research Letters, 39(6): L06501. doi: 10.1029/2012GL050874
    [73]
    Steele M, Dickinson S. 2016. The phenology of Arctic Ocean surface warming. Journal of Geophysical Research: Oceans, 121(9): 6847–6861. doi: 10.1002/2016JC012089
    [74]
    Steele M, Dickinson S, Zhang Jinlun, et al. 2015. Seasonal ice loss in the Beaufort Sea: toward synchrony and prediction. Journal of Geophysical Research: Oceans, 120(2): 1118–1132. doi: 10.1002/2014JC010247
    [75]
    Steele M, Ermold W, Zhang Jinlun. 2008. Arctic Ocean surface warming trends over the past 100 years. Geophysical Research Letters, 35(2): L02614. doi: 10.1029/2007GL031651
    [76]
    Stroeve J C, Serreze M C, Holland M M, et al. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110(3–4): 1005–1027. doi: 10.1007/s10584-011-0101-1
    [77]
    Strong C, Rigor I G. 2013. Arctic marginal ice zone trending wider in summer and narrower in winter. Geophysical Research Letters, 40(18): 4864–4868. doi: 10.1002/grl.50928
    [78]
    Tonboe R T, Eastwood S, Lavergne T, et al. 2016. The EUMETSAT sea ice concentration climate data record. The Cryosphere, 10(5): 2275–2290. doi: 10.5194/tc-10-2275-2016
    [79]
    Tschudi M A, Maslanik J A, Perovich D K. 2008. Derivation of melt pond coverage on Arctic sea ice using MODIS observations. Remote Sensing of Environment, 112(5): 2605–2614. doi: 10.1016/j.rse.2007.12.009
    [80]
    Tucker III W B, Gow A J, Meese D A, et al. 1999. Physical characteristics of summer sea ice across the Arctic Ocean. Journal of Geophysical Research: Oceans, 104(C1): 1489–1504. doi: 10.1029/98JC02607
    [81]
    Untersteiner N. 1961. On the mass and heat budget of Arctic sea ice. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A, 12(2): 151–182,
    [82]
    Wang Zongliang, Li Zhen, Zeng Jiangyuan, et al. 2020. Spatial and temporal variations of Arctic sea ice from 2002 to 2017. Earth and Space Science, 7(9): e2020EA001278. doi: 10.1029/2020EA001278
    [83]
    Webster M A, Rigor I G, Perovich D K, et al. 2015. Seasonal evolution of melt ponds on Arctic sea ice. Journal of Geophysical Research: Oceans, 120(9): 5968–5982. doi: 10.1002/2015JC011030
    [84]
    Wu Zhankai, Wang Xiongdong. 2019. Variability of Arctic sea ice (1979–2016). Water, 11(1): 23. doi: 10.3390/w11010023
    [85]
    Zege E, Malinka A, Katsev I, et al. 2015. Algorithm to retrieve the melt pond fraction and the spectral albedo of Arctic summer ice from satellite optical data. Remote Sensing of Environment, 163: 153–164. doi: 10.1016/j.rse.2015.03.012
    [86]
    Zheng Lei, Cheng Xiao, Chen Zhuoqi, et al. 2021. Delay in Arctic sea ice freeze-up linked to early summer sea ice loss: evidence from satellite observations. Remote Sensing, 13(11): 2162. doi: 10.3390/rs13112162
    [87]
    Zheng Jiacheng, Geldsetzer T, Yackel J. 2017. Snow thickness estimation on first-year sea ice using microwave and optical remote sensing with melt modelling. Remote Sensing of Environment, 199: 321–332. doi: 10.1016/j.rse.2017.06.038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (517) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return