Volume 41 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
Kezhao Fang, Jiawen Sun, Guangchun Song, Gang Wang, Hao Wu, Zhongbo Liu. A GPU accelerated Boussinesq-type model for coastal waves[J]. Acta Oceanologica Sinica, 2022, 41(9): 158-168. doi: 10.1007/s13131-022-2004-6
Citation: Kezhao Fang, Jiawen Sun, Guangchun Song, Gang Wang, Hao Wu, Zhongbo Liu. A GPU accelerated Boussinesq-type model for coastal waves[J]. Acta Oceanologica Sinica, 2022, 41(9): 158-168. doi: 10.1007/s13131-022-2004-6

A GPU accelerated Boussinesq-type model for coastal waves

doi: 10.1007/s13131-022-2004-6
Funds:  The National Key Research and Development Program under contract No. 2019YFC1407700; the National Natural Science Foundation of China under contract Nos 51779022, 52071057 and 51809053.
More Information
  • Corresponding author: E-mail: jwsun@nmemc.org.cn
  • Received Date: 2021-09-02
  • Accepted Date: 2022-02-14
  • Available Online: 2022-08-03
  • Publish Date: 2022-08-31
  • This study presents an efficient Boussinesq-type wave model accelerated by a single Graphics Processing Unit (GPU). The model uses the hybrid finite volume and finite difference method to solve weakly dispersive and nonlinear Boussinesq equations in the horizontal plane, enabling the model to have the shock-capturing ability to deal with breaking waves and moving shoreline properly. The code is written in CUDA C. To achieve better performance, the model uses cyclic reduction technique to solve massive tridiagonal linear systems and overlapped tiling/shared memory to reduce global memory access and enhance data reuse. Four numerical tests are conducted to validate the GPU implementation. The performance of the GPU model is evaluated by running a series of numerical simulations on two GPU platforms with different hardware configurations. Compared with the CPU version, the maximum speedup ratios for single-precision and double-precision calculations are 55.56 and 32.57, respectively.
  • loading
  • [1]
    Berkhoff J C W, Booy N, Radder A C. 1982. Verification of numerical wave propagation models for simple harmonic linear water waves. Coastal Engineering, 6(3): 255–379. doi: 10.1016/0378-3839(82)90022-9
    [2]
    Brocchini M. 2013. A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2160): 20130496
    [3]
    Erduran K S, Ilic S, Kutija V. 2005. Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations. International Journal for Numerical Methods in Fluids, 49(11): 1213–1232. doi: 10.1002/fld.1021
    [4]
    Fang Kezhao, Liu Zhongbo, Sun Jiawen, et al. 2020. Development and validation of a two-layer Boussinesq model for simulating free surface waves generated by bottom motion. Applied Ocean Research, 94: 101977. doi: 10.1016/j.apor.2019.101977
    [5]
    Fang Kezhao, Liu Zhongbo, Zou Zhili. 2016. Fully nonlinear modeling wave transformation over fringing reefs using shock-capturing boussinesq model. Journal of Coastal Research, 32(1): 164–171
    [6]
    Fang Kezhao, Zou Zhili, Dong Ping, et al. 2013. An efficient shock capturing algorithm to the extended Boussinesq wave Equations. Applied Ocean Research, 43: 11–20. doi: 10.1016/j.apor.2013.07.001
    [7]
    Kim G, Lee C, Suh K D. 2009a. Extended Boussinesq equations for rapidly varying topography. Ocean Engineering, 36(11): 842–851. doi: 10.1016/j.oceaneng.2009.05.002
    [8]
    Kim D H, Lynett P J, Socolofsky S A. 2009b. A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows. Ocean Modelling, 27(3–4): 198–214. doi: 10.1016/j.ocemod.2009.01.005
    [9]
    Kim B, Oh C, Yi Youngmin, et al. 2018. GPU-accelerated boussinesq model using compute unified device architecture FORTRAN. Journal of Coastal Research, 85(sp1): 1176–1180
    [10]
    Kirby J T. 2016. Boussinesq models and their application to coastal processes across a wide range of scales. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(6): 03116005
    [11]
    Kirby J T. 2017. Recent advances in nearshore wave, circulation, and sediment transport modeling. Journal of Marine Research, 75(3): 263–300. doi: 10.1357/002224017821836824
    [12]
    Kirby J T, Wei Ge, Chen Qin, et al. 1998. FUNWAVE 1.0 fully nonlinear Boussinesq wave model-documentation and user’s manual. Newark: University of Delaware
    [13]
    Klonaris G T, Memos C D, Drønen N K, et al. 2018. Simulating 2DH coastal morphodynamics with a Boussinesq-type model. Coastal Engineering Journal, 60(2): 159–179. doi: 10.1080/21664250.2018.1462300
    [14]
    Liu Zhongbo, Fang Kezhao, Cheng Yongzhou. 2018. A new multi-layer irrotational Boussinesq-type model for highly nonlinear and dispersive surface waves over a mildly sloping seabed. Journal of Fluid Mechanics, 842: 323–353. doi: 10.1017/jfm.2018.99
    [15]
    Liu Zhongbo, Fang Kezhao, Sun Jiawen. 2019. A multi-layer Boussinesq-type model with second-order spatial derivatives: theoretical analysis and numerical implementation. Ocean Engineering, 191: 106545. doi: 10.1016/j.oceaneng.2019.106545
    [16]
    Lynett P J. 2002. A multi-layer approach to modeling generation, propagation, and interaction of water waves [dissertation]. New York: Cornell University
    [17]
    Lynett P J, Swigle D, Son S, et al. 2010. Experimental study of solitary wave evolution over a 3D shallow shelf. In: Proceedings of the 32nd Conference on Coastal Engineering. New York: Curran Associates Inc., 813–823
    [18]
    Madsen P A, Fuhrman D R. 2020. Trough instabilities in Boussinesq formulations for water waves. Journal of Fluid Mechanics, 889: A38. doi: 10.1017/jfm.2020.76
    [19]
    Madsen P A, Sørensen S R. 1992. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry. Coastal Engineering, 18(3−4): 183–204. doi: 10.1016/0378-3839(92)90019-Q
    [20]
    Orszaghova J, Borthwick A G L, Taylor P H. 2012. From the paddle to the beach—A Boussinesq shallow water numerical wave tank based on Madsen and Sørensen’s equations. Journal of Computational Physics, 231(2): 328–344. doi: 10.1016/j.jcp.2011.08.028
    [21]
    Shi Fengyan, Kirby J T, Harris J C, et al. 2012. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43–44: 36–51
    [22]
    Shi Fengyan, Malej M, Smith J M, et al. 2018. Breaking of ship bores in a Boussinesq-type ship-wake model. Coastal Engineering, 132: 1–12. doi: 10.1016/j.coastaleng.2017.11.002
    [23]
    Tavakkol S, Lynett P. 2017. Celeris: a GPU-accelerated open source software with a Boussinesq-type wave solver for real-time interactive simulation and visualization. Computer Physics Communications, 217: 117–127. doi: 10.1016/j.cpc.2017.03.002
    [24]
    Tavakkol S, Lynett P. 2020. Celeris Base: an interactive and immersive Boussinesq-type nearshore wave simulation software. Computer Physics Communications, 248: 106966. doi: 10.1016/j.cpc.2019.106966
    [25]
    Wang Yueling, Liang Qiuhua, Kesserwani G, et al. 2011. A 2D shallow flow model for practical dam-break simulations. Journal of Hydraulic Research, 49(3): 307–316. doi: 10.1080/00221686.2011.566248
    [26]
    Yuan Ye, Shi Fengyan, Kirby J T, et al. 2020. FUNWAVE-GPU: multiple-GPU acceleration of a Boussinesq-type wave model. Journal of Advances in Modeling Earth Systems, 12(5): e2019MS001957
    [27]
    Zhang Yao, Cohen J, Owens J D. 2010. Fast tridiagonal solvers on the GPU. ACM SIGPLAN Notices, 45(5): 127–136. doi: 10.1145/1837853.1693472
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (689) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return