Citation: | Kezhao Fang, Jiawen Sun, Guangchun Song, Gang Wang, Hao Wu, Zhongbo Liu. A GPU accelerated Boussinesq-type model for coastal waves[J]. Acta Oceanologica Sinica, 2022, 41(9): 158-168. doi: 10.1007/s13131-022-2004-6 |
[1] |
Berkhoff J C W, Booy N, Radder A C. 1982. Verification of numerical wave propagation models for simple harmonic linear water waves. Coastal Engineering, 6(3): 255–379. doi: 10.1016/0378-3839(82)90022-9
|
[2] |
Brocchini M. 2013. A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2160): 20130496
|
[3] |
Erduran K S, Ilic S, Kutija V. 2005. Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations. International Journal for Numerical Methods in Fluids, 49(11): 1213–1232. doi: 10.1002/fld.1021
|
[4] |
Fang Kezhao, Liu Zhongbo, Sun Jiawen, et al. 2020. Development and validation of a two-layer Boussinesq model for simulating free surface waves generated by bottom motion. Applied Ocean Research, 94: 101977. doi: 10.1016/j.apor.2019.101977
|
[5] |
Fang Kezhao, Liu Zhongbo, Zou Zhili. 2016. Fully nonlinear modeling wave transformation over fringing reefs using shock-capturing boussinesq model. Journal of Coastal Research, 32(1): 164–171
|
[6] |
Fang Kezhao, Zou Zhili, Dong Ping, et al. 2013. An efficient shock capturing algorithm to the extended Boussinesq wave Equations. Applied Ocean Research, 43: 11–20. doi: 10.1016/j.apor.2013.07.001
|
[7] |
Kim G, Lee C, Suh K D. 2009a. Extended Boussinesq equations for rapidly varying topography. Ocean Engineering, 36(11): 842–851. doi: 10.1016/j.oceaneng.2009.05.002
|
[8] |
Kim D H, Lynett P J, Socolofsky S A. 2009b. A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows. Ocean Modelling, 27(3–4): 198–214. doi: 10.1016/j.ocemod.2009.01.005
|
[9] |
Kim B, Oh C, Yi Youngmin, et al. 2018. GPU-accelerated boussinesq model using compute unified device architecture FORTRAN. Journal of Coastal Research, 85(sp1): 1176–1180
|
[10] |
Kirby J T. 2016. Boussinesq models and their application to coastal processes across a wide range of scales. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(6): 03116005
|
[11] |
Kirby J T. 2017. Recent advances in nearshore wave, circulation, and sediment transport modeling. Journal of Marine Research, 75(3): 263–300. doi: 10.1357/002224017821836824
|
[12] |
Kirby J T, Wei Ge, Chen Qin, et al. 1998. FUNWAVE 1.0 fully nonlinear Boussinesq wave model-documentation and user’s manual. Newark: University of Delaware
|
[13] |
Klonaris G T, Memos C D, Drønen N K, et al. 2018. Simulating 2DH coastal morphodynamics with a Boussinesq-type model. Coastal Engineering Journal, 60(2): 159–179. doi: 10.1080/21664250.2018.1462300
|
[14] |
Liu Zhongbo, Fang Kezhao, Cheng Yongzhou. 2018. A new multi-layer irrotational Boussinesq-type model for highly nonlinear and dispersive surface waves over a mildly sloping seabed. Journal of Fluid Mechanics, 842: 323–353. doi: 10.1017/jfm.2018.99
|
[15] |
Liu Zhongbo, Fang Kezhao, Sun Jiawen. 2019. A multi-layer Boussinesq-type model with second-order spatial derivatives: theoretical analysis and numerical implementation. Ocean Engineering, 191: 106545. doi: 10.1016/j.oceaneng.2019.106545
|
[16] |
Lynett P J. 2002. A multi-layer approach to modeling generation, propagation, and interaction of water waves [dissertation]. New York: Cornell University
|
[17] |
Lynett P J, Swigle D, Son S, et al. 2010. Experimental study of solitary wave evolution over a 3D shallow shelf. In: Proceedings of the 32nd Conference on Coastal Engineering. New York: Curran Associates Inc., 813–823
|
[18] |
Madsen P A, Fuhrman D R. 2020. Trough instabilities in Boussinesq formulations for water waves. Journal of Fluid Mechanics, 889: A38. doi: 10.1017/jfm.2020.76
|
[19] |
Madsen P A, Sørensen S R. 1992. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry. Coastal Engineering, 18(3−4): 183–204. doi: 10.1016/0378-3839(92)90019-Q
|
[20] |
Orszaghova J, Borthwick A G L, Taylor P H. 2012. From the paddle to the beach—A Boussinesq shallow water numerical wave tank based on Madsen and Sørensen’s equations. Journal of Computational Physics, 231(2): 328–344. doi: 10.1016/j.jcp.2011.08.028
|
[21] |
Shi Fengyan, Kirby J T, Harris J C, et al. 2012. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43–44: 36–51
|
[22] |
Shi Fengyan, Malej M, Smith J M, et al. 2018. Breaking of ship bores in a Boussinesq-type ship-wake model. Coastal Engineering, 132: 1–12. doi: 10.1016/j.coastaleng.2017.11.002
|
[23] |
Tavakkol S, Lynett P. 2017. Celeris: a GPU-accelerated open source software with a Boussinesq-type wave solver for real-time interactive simulation and visualization. Computer Physics Communications, 217: 117–127. doi: 10.1016/j.cpc.2017.03.002
|
[24] |
Tavakkol S, Lynett P. 2020. Celeris Base: an interactive and immersive Boussinesq-type nearshore wave simulation software. Computer Physics Communications, 248: 106966. doi: 10.1016/j.cpc.2019.106966
|
[25] |
Wang Yueling, Liang Qiuhua, Kesserwani G, et al. 2011. A 2D shallow flow model for practical dam-break simulations. Journal of Hydraulic Research, 49(3): 307–316. doi: 10.1080/00221686.2011.566248
|
[26] |
Yuan Ye, Shi Fengyan, Kirby J T, et al. 2020. FUNWAVE-GPU: multiple-GPU acceleration of a Boussinesq-type wave model. Journal of Advances in Modeling Earth Systems, 12(5): e2019MS001957
|
[27] |
Zhang Yao, Cohen J, Owens J D. 2010. Fast tridiagonal solvers on the GPU. ACM SIGPLAN Notices, 45(5): 127–136. doi: 10.1145/1837853.1693472
|