Citation: | Wen Yang, Wenjia Hu, Bin Chen, Hongjian Tan, Shangke Su, Like Ding, Peng Dong, Weiwei Yu, Jianguo Du. Impact of climate change on potential habitat distribution of Sciaenidae in the coastal waters of China[J]. Acta Oceanologica Sinica, 2023, 42(4): 59-71. doi: 10.1007/s13131-022-2053-x |
Andrews S, Leroux S J, Fortin M J. 2020. Modelling the spatial–temporal distributions and associated determining factors of a keystone pelagic fish. ICES Journal of Marine Science, 77(7–8): 2776–2789
|
Assis J, Tyberghein L, Bosch S, et al. 2018. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3): 277–284. doi: 10.1111/geb.12693
|
Bindoff N L, Cheung W W L, Kairo J G, et al. 2019. Changing ocean, marine ecosystems, and dependent communities. In: Pörtner H O, Roberts D C, Masson-Delmotte V, et al., eds. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Geneva: Intergovernmental Panel on Climate Change, 477–587
|
Bohorquez J J, Xue Guifang, Frankstone T, et al. 2021. China’s little-known efforts to protect its marine ecosystems safeguard some habitats but omit others. Science Advances, 7(46): eabj1569. doi: 10.1126/sciadv.abj1569
|
Brown J L. 2014. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7): 694–700. doi: 10.1111/2041-210X.12200
|
Burrows M T, Schoeman D S, Buckley L B, et al. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science, 334(6056): 652–655. doi: 10.1126/science.1210288
|
Burrows M T, Schoeman D S, Richardson A J, et al. 2014. Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507(7493): 492–495. doi: 10.1038/nature12976
|
Chen Peng, Chen Xinjun. 2016. Analysis of habitat distribution of Argentine shortfin squid (Illex argentinus) in the Southwest Atlantic Ocean using maximum entropy model. Journal of Fisheries of China (in Chinese), 40(6): 893–902
|
Chen Shuang, Guo Ai, Chen Xinjun. 2019. Distribution forecasting of habitat of chub mackerel (Scomber japonicus) during the climate change in the coastal waters. Journal of Fisheries of China (in Chinese), 43(3): 593–604
|
Chen Yunlong, Shan Xiujuan, Ovando D, et al. 2021a. Predicting current and future global distribution of black rockfish (Sebastes schlegelii) under changing climate. Ecological Indicators, 128: 107799. doi: 10.1016/j.ecolind.2021.107799
|
Chen Jinghui, Wang Xuefang, Tian Siquan, et al. 2021b. A review of the development of fishery resources monitoring in the Yangtze River Estuary and its adjacent waters. Resources and Environment in the Yangtze Basin (in Chinese), 30(1): 122–136
|
Cheung W W L, Brodeur R D, Okey T A, et al. 2015. Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Progress in Oceanography, 130: 19–31. doi: 10.1016/j.pocean.2014.09.003
|
Cheung W W L, Lam V W Y, Sarmiento J L, et al. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10(3): 235–251. doi: 10.1111/j.1467-2979.2008.00315.x
|
Chinese Offshore Investigation, Assessment Project Office of the State Oceanic Administration. 2006. Technical Specifications for Marine Biological and Ecological Investigation for Chinese Offshore Investigation and Assessment Project (in Chinese). Beijing: China Ocean Press
|
Costa M D P, Wilson K A, Dyer P J, et al. 2021. Potential future climate-induced shifts in marine fish larvae and harvested fish communities in the subtropical southwestern Atlantic Ocean. Climatic Change, 165(3–4): 66
|
Du Jianguo, Cheung W W L, Chen Bin, et al. 2012. Progress and prospect of climate change and marine biodiversity. Biodiversity Sceince (in Chinese), 20(6): 745–754
|
Dufresne J L, Foujols M A, Denvil S, et al. 2013. Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Climate Dynamics, 40(9–10): 2123–2165
|
Dunne J P, John J G, Adcroft A J, et al. 2012. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. Journal of Climate, 25(19): 6646–6665. doi: 10.1175/JCLI-D-11-00560.1
|
Guisan A, Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9): 993–1009. doi: 10.1111/j.1461-0248.2005.00792.x
|
Guisan A, Zimmermann N E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3): 147–186
|
Han Qingpeng, Shan Xiujuan, Wan Rong, et al. 2019. Spatiotemporal distribution and the estimated abundance indices of Larimichthys polyactis in winter in the Yellow Sea based on geostatistical delta-generalized linear mixed models. Journal of Fisheries of China (in Chinese), 43(7): 1603–1614
|
Hastings R A, Rutterford L A, Freer J J, et al. 2020. Climate change drives poleward increases and equatorward declines in marine species. Current Biology, 30(8): 1572–1577. doi: 10.1016/j.cub.2020.02.043
|
Hu Wenjia, Du Jianguo, Su Shangke, et al. 2022. Effects of climate change in the seas of China: predicted changes in the distribution of fish species and diversity. Ecological Indicators, 134: 108489. doi: 10.1016/j.ecolind.2021.108489
|
Jiang Mei, Shen Xinqiang, Chen Lianfang. 2006. Relationship between with abundance distribution of fish eggs, larvae and environmental factors in the Changjiang Estuary and vicinity waters in spring. Marine Enviromental Science (in Chinese), 25(2): 37–39, 44
|
Jones M C, Cheung W W L. 2015. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES Journal of Marine Science, 72(3): 741–752. doi: 10.1093/icesjms/fsu172
|
Kang Bin, Pecl G T, Lin Longshan, et al. 2021. Climate change impacts on China’s marine ecosystems. Reviews in Fish Biology and Fisheries, 31(3): 599–629. doi: 10.1007/s11160-021-09668-6
|
Kass J M, Muscarella R, Galante P J, et al. 2021. ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution, 12(9): 1602–1608. doi: 10.1111/2041-210X.13628
|
Kumar S, Graham J, West A M, et al. 2014. Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture, 103: 55–62. doi: 10.1016/j.compag.2014.02.007
|
Lenoir S, Beaugrand G, Lecuyer É. 2011. Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean. Global Change Biology, 17(1): 115–129. doi: 10.1111/j.1365-2486.2010.02229.x
|
Lenoir J, Bertrand R, Comte L, et al. 2020. Species better track climate warming in the oceans than on land. Nature Ecology & Evolution, 4(8): 1044–1059. doi: 10.1038/s41559-020-1198-2
|
Liang Jie, Peng Yuhui, Zhu Ziqian, et al. 2021. Impacts of changing climate on the distribution of migratory birds in China: habitat change and population centroid shift. Ecological Indicators, 127: 107729. doi: 10.1016/j.ecolind.2021.107729
|
Liu Ruiyu. 2008. Checklist of Marine Biota of China Seas (in Chinese). Beijing: Science Press
|
Liu Xiaoxiao, Wang Jin, Xu Binduo, et al. 2017. Impacts of fishing pressure and climate change on catches of small yellow croaker in the Yellow Sea and the Bohai Sea. Periodical of Ocean University of China (in Chinese), 47(8): 58–64
|
Liu Zunlei, Yang Linlin, Yuan Xingwei, et al. 2020. Overwintering distribution and its environmental determinants of small yellow croaker based on ensemble habitat suitability modeling. Chinese Journal of Applied Ecology (in Chinese), 31(6): 2076–2086
|
Lotze H K, Tittensor D P, Bryndum-Buchholz A, et al. 2019. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Sciences of the United States of America, 116(26): 12907–12912. doi: 10.1073/pnas.1900194116
|
Ma Jin, Huang Jinling, Chen Jinhui, et al. 2020. Analysis of spatiotemporal fish density distribution and its influential factors based on Generalized Additive Model (GAM) in the Yangtze River Estuary. Journal of Fisheries of China (in Chinese), 44(6): 936–946
|
Melo-Merino S M, Reyes-Bonilla H, Lira-Noriega A. 2020. Ecological niche models and species distribution models in marine environments: a literature review and spatial analysis of evidence. Ecological Modelling, 415: 108837. doi: 10.1016/j.ecolmodel.2019.108837
|
Morley J W, Selden R L, Latour R J, et al. 2018. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE, 13(5): e0196127. doi: 10.1371/journal.pone.0196127
|
Muscarella R, Galante P J, Soley-Guardia M, et al. 2020. ENMeval: automated runs and evaluations of ecological niche models. https://mran.microsoft.com/snapshot/2020-12-31/web/packages/ENMeval/index.html[2020-09-12]
|
Pachauri R K, Allen M R, Barros V R, et al. 2014. Climate change 2014: Synthesis report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC
|
Pei Rude, Ma Qiuyun, Tian Siquan, et al. 2021. Growth, maturity and mortality of Johnius distinctus and J. belangerii in offshore waters of southern Zhejiang Province. South China Fisheries Science (in Chinese), 17(6): 39–47
|
Perry A L, Low P J, Ellis J R, et al. 2005. Climate change and distribution shifts in marine fishes. Science, 308(5730): 1912–1915. doi: 10.1126/science.1111322
|
Petatán-Ramírez D, Whitehead D A, Guerrero-Izquierdo T, et al. 2020. Habitat suitability of Rhincodon typus in three localities of the Gulf of California: environmental drivers of seasonal aggregations. Journal of Fish Biology, 97(4): 1177–1186. doi: 10.1111/jfb.14496
|
Phillips S J, Dudík M. 2008. Modeling of species distributions with MAXENT: new extensions and a comprehensive evaluation. Ecography, 31(2): 161–175. doi: 10.1111/j.0906-7590.2008.5203.x
|
Radosavljevic A, Anderson R P. 2014. Making better MAXENT models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography, 41(4): 629–643. doi: 10.1111/jbi.12227
|
Segurado P, Araujo M B. 2004. An evaluation of methods for modelling species distributions. Journal of Biogeography, 31(10): 1555–1568. doi: 10.1111/j.1365-2699.2004.01076.x
|
Shen Shichang, Huang Liangmin, Wang Jiaqiao, et al. 2020. A preliminary study on the biological characteristics of Johnius belengerii inhabiting Xiamen Sea Are. Transactions of Oceanology and Limnology (in Chinese), 42(1): 129–135
|
Sheng Qiang, Ru Huijun, Li Yunfeng, et al. 2019. The distribution pattern of national aquatic germplasm reserves in China. Journal of Fisheries of China (in Chinese), 43(1): 62–80
|
Silva C, Leiva F, Lastra J. 2019. Predicting the current and future suitable habitat distributions of the anchovy (Engraulis ringens) using the Maxent model in the coastal areas off central-northern Chile. Fisheries Oceanography, 28(2): 171–182. doi: 10.1111/fog.12400
|
State Oceanic Administration. 2016. Atlas of China’s Coastal Seas: Marine Life and Ecology (in Chinese). Beijing: China Ocean Press, 2016
|
Tabor K, Williams J W. 2010. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecological Applications, 20(2): 554–565. doi: 10.1890/09-0173.1
|
Tan Hongjian, Cai Rongshuo, Huo Yunlong, et al. 2020. Projections of changes in marine environment in coastal China seas over the 21st century based on CMIP5 models. Journal of Oceanology and Limnology, 38(6): 1676–1691. doi: 10.1007/s00343-019-9134-5
|
Thuiller W, Guéguen M, Renaud J, et al. 2019. Uncertainty in ensembles of global biodiversity scenarios. Nature Communications, 10(1): 1446. doi: 10.1038/s41467-019-09519-w
|
Tyberghein L, Verbruggen H, Pauly K, et al. 2012. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography, 21(2): 272–281. doi: 10.1111/j.1466-8238.2011.00656.x
|
Wang Miao, Hong Bo, Zhang Yuping, et al. 2016. Spring and summer fish community structure in northern Hangzhou Bay. Journal of Hydroecology (in Chinese), 37(5): 75–81
|
Wang Xuehui, Qiu Yongsong, Du Feiyan, et al. 2019. Roles of fishing and climate change in long-term fish species succession and population dynamics in the outer Beibu Gulf, South China Sea. Acta Oceanologica Sinica, 38(10): 1–8. doi: 10.1007/s13131-019-1484-5
|
Wang Linlong, Zhang Zhixin, Lin Longshan, et al. 2021. Redistribution of the lizardfish Harpadon nehereus in coastal waters of China due to climate change. Hydrobiologia, 848(20): 4919–4932. doi: 10.1007/s10750-021-04682-y
|
Worm B, Lotze H K. 2021. Marine biodiversity and climate change. In: Letcher T M, ed. Climate Change: Observed Impacts on Planet Earth. 3rd ed. Amsterdam: Elsevier, 445–464
|
Xie Yangjie, Li Jun, Huang Liangmin, et al. 2012. Temporal and spatial variations of sciaenid fish resources in Fujian coastal waters in 2006 and 2007. Journal of Applied Oceanography (in Chinese), 31(3): 403–411
|
Xu Zhaoli, Chen Jiajie. 2010. Analysis to population division and migratory routine of populations and migratory routines of Argyrosomus argentatus in the North China waters. Acta Ecologica Sinica (in Chinese), 30(23): 6442–6450
|
Yang Wen, Hu Wenjia, Chen Bin, et al. 2022. The potential distribution of main Sciaenidae species in coastal China based on MaxEnt model. Chinese Journal of Ecology (in Chinese), 41(9): 1825–1834
|
Yang Gang, Zhang Tao, Zhuang Ping, et al. 2014. Preliminary assessment of habitat of juvenile Collichthys lucidus in the Yangtze Estuary. Chinese Journal of Applied Ecology (in Chinese), 25(8): 2418–2424
|
Yao Cuiluan, Somero G N. 2014. The impact of ocean warming on marine organisms. Chinese Science Bulletin, 59(5): 468–479
|
Yu Dan, Chen Ming, Zhou Zhuocheng, et al. 2013. Global climate change will severely decrease potential distribution of the East Asian coldwater fish Rhynchocypris oxycephalus (Actinopterygii, Cyprinidae). Hydrobiologia, 700(1): 23–32. doi: 10.1007/s10750-012-1213-y
|
Yuan Xingwei, Liu Zunlei, Cheng Jiahua, et al. 2017. Impact of climate change on nekton community structure and some commercial species in the offshore area of the northern East China Sea in winter. Acta Ecologica Sinica (in Chinese), 37(8): 2796–2808
|
Zeng Jiawei, Lin Kun, Wang Xuefeng, et al. 2019. Fish community structure and its relationship with environmental factors in Leizhou Bay. Journal of Fishery Sciences of China (in Chinese), 26(1): 108–117. doi: 10.3724/SP.J.1118.2019.18378
|
Zhang Jiarong. 2020. Research on the habitat distribution model of Albacore (Thunnus alalunga) in the South Pacific (in Chinese) [dissertation]. Shanghai: Shanghai Ocean University
|
Zhang Zhixin, Mammola S, Xian Weiwei, et al. 2020a. Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze Estuary, China. Diversity and Distributions, 26(1): 126–137. doi: 10.1111/ddi.13002
|
Zhang Xiaomin, Shi Yongchuang, Li Fan, et al. 2020b. Prediction of potential fishing ground for Pacific saury (Cololabis saira) based on MAXENT model. Journal of Shanghai Ocean University (in Chinese), 29(2): 280–286
|
Zhang Zhixin, Xu Shengyong, Capinha C, et al. 2019. Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecological Indicators, 104: 333–340. doi: 10.1016/j.ecolind.2019.05.023
|
Zhang Linlin, Zhou Yongdong, Jiang Rijin, et al. 2020c. Spatial niche of major fish species in spring in the coastal waters of central and southern Zhejiang Province, China. Chinese Journal of Applied Ecology (in Chinese), 31(2): 659–666
|
Zhu Yugui, Zhang Zhixin, Reygondeau G, et al. 2020. Projecting changes in the distribution and maximum catch potential of warm water fishes under climate change scenarios in the Yellow Sea. Diversity and Distributions, 26(7): 806–817. doi: 10.1111/ddi.13032
|