Citation: | Jinghua Zhang, Wensheng Jiang, Xueqing Zhang. Analysis of a simplification strategy in a nonhydrostatic model for surface and internal wave problems[J]. Acta Oceanologica Sinica, 2023, 42(2): 29-43. doi: 10.1007/s13131-022-2068-3 |
Ai Congfang, Jin Sheng. 2012. A multi-layer non-hydrostatic model for wave breaking and run-up. Coastal Engineering, 62: 1–8. doi: 10.1016/j.coastaleng.2011.12.012
|
Ai Congfang, Ma Yuxiang, Yuan Changfu, et al. 2019. Development and assessment of semi-implicit nonhydrostatic models for surface water waves. Ocean Modelling, 144: 101489. doi: 10.1016/j.ocemod.2019.101489
|
Ai Congfang, Ma Yuxiang, Yuan Changfu, et al. 2021a. A three-dimensional non-hydrostatic model for tsunami waves generated by submarine landslides. Applied Mathematical Modelling, 96: 1–19. doi: 10.1016/j.apm.2021.02.014
|
Ai Congfang, Ma Yuxiang, Yuan Changfu, et al. 2021b. Non-hydrostatic model for internal wave generations and propagations using immersed boundary method. Ocean Engineering, 225: 108801. doi: 10.1016/j.oceaneng.2021.108801
|
Aricò C, Re C L. 2016. A non-hydrostatic pressure distribution solver for the nonlinear shallow water equations over irregular topography. Advances in Water Resources, 98: 47–69
|
Berntsen J. 2004. USERS GUIDE for a modesplit σ-coordinate numerical ocean model. Bergen: University of Bergen
|
Berntsen J, Xing Jiuxing, Alendal G. 2006. Assessment of non-hydrostatic ocean models using laboratory scale problems. Continental Shelf Research, 26(12/13): 1433–1447
|
Berntsen J, Xing Jiuxing, Davies A M. 2008. Numerical studies of internal waves at a sill: sensitivity to horizontal grid size and subgrid scale closure. Continental Shelf Research, 28(10/11): 1376–1393
|
Berntsen J, Xing Jiuxing, Davies A M. 2009. Numerical studies of flow over a sill: sensitivity of the non-hydrostatic effects to the grid size. Ocean Dynamics, 59(6): 1043–1059. doi: 10.1007/s10236-009-0227-0
|
Botelho D, Imberger J, Dallimore C, et al. 2009. A hydrostatic/non-hydrostatic grid-switching strategy for computing high-frequency, high wave number motions embedded in geophysical flows. Environmental Modelling & Software, 24(4): 473–488
|
Casulli V. 1999. A semi-implicit finite difference method for non-hydrostatic, free-surface flows. International Journal for Numerical Methods in Fluids, 30(4): 425–440. doi: 10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
|
Casulli V, Zanolli P. 2002. Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems. Mathematical and Computer Modelling, 36(9–10): 1131–1149
|
Choi B J, Hwang C, Lee S H. 2014. Meteotsunami-tide interactions and high-frequency sea level oscillations in the eastern Yellow Sea. Journal of Geophysical Research: Oceans, 119(10): 6725–6742. doi: 10.1002/2013JC009788
|
Daily C, Imberger J. 2003. Modelling solitons under the hydrostatic and Boussinesq approximations. International Journal for Numerical Methods in Fluids, 43(2): 231–252
|
Davies A M, Xing Jiuxing, Berntsen J. 2009. Non-hydrostatic and non-linear contributions to the internal wave energy flux in sill regions. Ocean Dynamics, 59(6): 881–897. doi: 10.1007/s10236-009-0217-2
|
Derakhti M, Kirby J T, Shi Fengyan, et al. 2015. NHWAVE: model revisions and tests of wave breaking in shallow and deep water. Newark: University of Delaware
|
Fringer O B, Gerritsen M, Street R L. 2006. An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Modelling, 14(3–4): 139–173
|
He Dongbin, Ma Yuxiang, Dong Guohai, et al. 2020. Predicting deep water wave breaking with a non-hydrostatic shock-capturing model. Ocean Engineering, 216: 108041. doi: 10.1016/j.oceaneng.2020.108041
|
Inall M, Cottier F, Griffiths C, et al. 2004. Sill dynamics and energy transformation in a jet fjord. Ocean Dynamics, 54(3–4): 307–314
|
Kanarska Y, Maderich V. 2003. A non-hydrostatic numerical model for calculating free-surface stratified flows. Ocean Dynamics, 53(3): 176–185. doi: 10.1007/s10236-003-0039-6
|
Kanarska Y, Shchepetkin A, McWilliams J C. 2007. Algorithm for non-hydrostatic dynamics in the Regional Oceanic Modeling System. Ocean Modelling, 18(3–4): 143–174
|
Lai Zhigang, Chen Changsheng, Cowles G W, et al. 2010a. A nonhydrostatic version of FVCOM: 1. Validation experiments. Journal of Geophysical Research: Oceans, 115(C11): C11010. doi: 10.1029/2009JC005525
|
Lai Zhigang, Chen Changsheng, Cowles G W, et al. 2010b. A nonhydrostatic version of FVCOM: 2. Mechanistic study of tidally generated nonlinear internal waves in Massachusetts Bay. Journal of Geophysical Research: Oceans, 115(C12): C12049
|
Liu Zhe, Lin Lei, Xie Lian, et al. 2016. Partially implicit finite difference scheme for calculating dynamic pressure in a terrain-following coordinate non-hydrostatic ocean model. Ocean Modelling, 106: 44–57. doi: 10.1016/j.ocemod.2016.09.004
|
Lu Xinhua, Dong Bingjiang, Mao Bing, et al. 2015. A two-dimensional depth-integrated non-hydrostatic numerical model for nearshore wave propagation. Ocean Modelling, 96: 187–202. doi: 10.1016/j.ocemod.2015.11.001
|
Lynett P J, Wu T R, Liu P L F. 2002. Modeling wave runup with depth-integrated equations. Coastal Engineering, 46(2): 89–107. doi: 10.1016/S0378-3839(02)00043-1
|
Ma Gangfeng, Kirby J T, Shi Fengyan. 2013. Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Modelling, 69: 146–165. doi: 10.1016/j.ocemod.2013.07.001
|
Ma Gangfeng, Shi Fengyan, Kirby J T. 2012. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling, 43–44: 22–35
|
Mahadevan A. 2006. Modeling vertical motion at ocean fronts: are nonhydrostatic effects relevant at submesoscales?. Ocean Modelling, 14(3–4): 222–240
|
Marshall J, Adcroft A, Hill C, et al. 1997a. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research: Oceans, 102(C3): 5753–5766. doi: 10.1029/96JC02775
|
Marshall J, Hill C, Perelman L, et al. 1997b. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans, 102(C3): 5733–5752. doi: 10.1029/96JC02776
|
Matsumura Y, Hasumi H. 2008. A non-hydrostatic ocean model with a scalable multigrid Poisson solver. Ocean Modelling, 24(1–2): 15–28
|
Shi Fengyan, Chickadel C C, Hsu TJ, et al. 2017. High-resolution non-hydrostatic modeling of frontal features in the mouth of the Columbia River. Estuaries and Coasts, 40(1): 296–309. doi: 10.1007/s12237-016-0132-y
|
Shi Jian, Shi Fengyan, Kirby J T, et al. 2015. Pressure decimation and interpolation (PDI) method for a baroclinic non-hydrostatic model. Ocean Modelling, 96: 265–279. doi: 10.1016/j.ocemod.2015.09.010
|
Shi Jian, Shi Fengyan, Zheng Jinhai et al. 2019. Interplay between grid resolution and pressure decimation in non-hydrostatic modeling of internal waves. Ocean Engineering, 186: 106110. doi: 10.1016/j.oceaneng.2019.06.014
|
Stelling G, Zijlema M. 2003. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. International Journal for Numerical Methods in Fluids, 43(1): 1–23. doi: 10.1002/fld.595
|
Synolakis C E. 1987. The runup of solitary waves. Journal of Fluid Mechanics, 185: 523–545. doi: 10.1017/S002211208700329X
|
Thomas L N, Tandon A, Mahadevan A. 2008. Submesoscale processes and dynamics. In: Hecht M W, Hasumi H, eds. Ocean Modeling in an Eddying Regime. Washington: American Geophysical Union, 17–38
|
Wei Zhangping, Jia Yafei. 2014. Non-hydrostatic finite element model for coastal wave processes. Coastal Engineering, 92: 31–47. doi: 10.1016/j.coastaleng.2014.07.001
|
Xing Jiuxing, Davies A M. 2006a. Processes influencing tidal mixing in the region of sills. Geophysical Research Letters, 33(4): L04603
|
Xing Jiuxing, Davies A M. 2006b. Influence of stratification and topography upon internal wave spectra in the region of sills. Geophysical Research Letters, 33(23): L23606. doi: 10.1029/2006GL028092
|
Xing Jiuxing, Davies A M. 2010. The effects of large and small-scale topography upon internal waves and implications for tidally induced mixing in sill regions. Ocean Dynamics, 60(1): 1–25. doi: 10.1007/s10236-009-0234-1
|
Yamazaki Y, Cheung K F, Kowalik Z. 2011. Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up. International Journal for Numerical Methods in Fluids, 67(12): 2081–2107. doi: 10.1002/fld.2485
|
Yamazaki Y, Kowalik Z, Cheung K F. 2009. Depth-integrated, non-hydrostatic model for wave breaking and run-up. International Journal for Numerical Methods in Fluids, 61(5): 473–497. doi: 10.1002/fld.1952
|
Zhang Z, Fringer O B, Ramp S R. 2011. Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05022
|
Zhou Zheyu, Yu Xiao, Hsu T J, et al. 2017. On nonhydrostatic coastal model simulations of shear instabilities in a stratified shear flow at high Reynolds number. Journal of Geophysical Research: Oceans, 122(4): 3081–3105. doi: 10.1002/2016JC012334
|
Zijlema M, Stelling G S. 2008. Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coastal Engineering, 55(10): 780–790. doi: 10.1016/j.coastaleng.2008.02.020
|
Zijlema M, Stelling G, Smit P. 2011. Simulating nearshore wave transformation with non-hydrostatic wave-flow modelling. In: Proceedings of the 12th International Workshop on Wave Hindcasting and Forecasting. Kona, HI: World Meteorological Organization
|