Citation: | Haiqiang Bai, Xiaojun Xie, Gongcheng Zhang, Ying Chen, Ziyu Liu, Lianqiao Xiong, Jianrong Hao, Xin Li. Mechanism of carbonate cementation and its influence on reservoir in Pinghu Formation of Xihu Sag[J]. Acta Oceanologica Sinica, 2023, 42(3): 65-75. doi: 10.1007/s13131-022-2079-0 |
Carothers W W, Adami L H, Rosenbauer R J. 1988. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochimica et Cosmochimica Acta, 52(10): 2445–2450. doi: 10.1016/0016-7037(88)90302-X
|
Chen Sizhong. 2003. Main geological characteristics and gas exploration directions in East China Sea Basin. China Offshore Oil and Gas (Geology) (in Chinese), 17(1): 6–13,19
|
Duan Wei, Luo Chengfei, Liu Jianzhang, et al. 2015. Effect of overpressure formation on reservoir diagenesis and its geological significance to LD block of Yinggehai Basin. Earth Science (in Chinese), 40(9): 1517–1528
|
Han Wuying, Lin Hongying, Cai Yanya. 1996. Study on the carbon flux in the South China Sea. Acta Oceanologica Sinica, 15(1): 85–92
|
Hao Lewei, Wang Qi, Guo Ruiliang, et al. 2018. Diagenetic fluids evolution of Oligocene Huagang Formation sandstone reservoir in the south of Xihu Sag, the East China Sea Shelf Basin: constraints from petrology, mineralogy, and isotope geochemistry. Acta Oceanologica Sinica, 37(2): 25–34. doi: 10.1007/s13131-017-1126-8
|
Hao Lewei, Wang Qi, Liao Peng. 2011. Forming mechanism of secondary porosity in tertiary reservoirs in Panyu Low Uplift and North Slope of Baiyun Sag. Acta Sedimentologica Sinica (in Chinese), 29(4): 734–743
|
He Sheng, Yang Zhi, He Zhiliang, et al. 2009. Mechanism of carbonate cementation and secondary dissolution porosity formation in deep-burial sandstones near the top overpressured surface in central part of Junggar Basin. Earth Science-Journal of China University of Geosciences (in Chinese), 34(5): 759–768,798. doi: 10.3799/dqkx.2009.084
|
Jiang Yiming, Shao Longyi, Li Shuai, et al. 2020. Deposition system and stratigraphy of Pinghu Formation in Pinghu Tectonic Belt, Xihu Sag. Geoscience (in Chinese), 34(1): 141–153
|
Keith M L, Weber J N. 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28(10/11): 1787–1816
|
Li Zengxue, Zhang Gongcheng, Li Ying, et al. 2012. The Paleogene coal-bearing basin and coal-measures distribution of China Sea area. Earth Science Frontiers (in Chinese), 19(4): 314–326
|
Liu Sibing, Huang Sijing, Shen Zhongmin, et al. 2014. Diagenetic fluid evolution and water-rock interaction model of carbonate cements in sandstone: An example from the reservoir sandstone of the Fourth Member of the Xujiahe Formation of the Xiaoquan-Fenggu area, Sichuan Province, China. Science China Earth Sciences, 57(5): 1077–1092. doi: 10.1007/s11430-014-4851-2
|
Liu Chengdong, Zhang Shoupeng, Liu Ting, et al. 2011. Chemical composition and isotopic characteristics of the carbonate cements in sandstone reservoir layer of Dongying sinking. Procedia Earth and Planetary Science, 2: 284–290. doi: 10.1016/j.proeps.2011.09.045
|
Lu Huan, Xu Changgui, Wang Qingbin, et al. 2019. Genetic mechanism of carbonate cements and its impact on the Mesozoic clastic reservoir quality of the C12 and Q17 structures, Bohai Sea Area. Oil and Gas Geology (in Chinese), 40(6): 1270–1280
|
O’Neil J R, Clayton R N, Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12): 5547–5558. doi: 10.1063/1.1671982
|
Shen Jian. 2020. Carbonate cementation characteristics and genetic mechanism of tight sandstone reservoirs in Longdong area, Ordos Basin. Lithologic Reservoirs (in Chinese), 32(2): 24–32
|
Wang Daifu, Luo Jinglan, Chen Shuhui, et al. 2017. Carbonate cementation and origin analysis of deep sandstone reservoirs in the Baiyun Sag, Pearl River Mouth Basin. Acta Geologica Sinica (in Chinese), 91(9): 2079–2090
|
Wang Qingbin, Zang Chunyan, Lai Weicheng, et al. 2009. Distribution characteristics and origin of carbonate cements in the middle and deep clastic reservoirs of the Paleogene in the Bozhong Depression. Oil and Gas Geology (in Chinese), 30(4): 438–443
|
Wang Yongxin, Zhao Chenglin. 2001. Characters of deep-buried clastic reservoir rocks in Hexiwu structural belt of Langgu depression. Oil and Gas Geology (in Chinese), 22(2): 119–122
|
Wang Tong, Zhu Xiaomin, Liu Yu et al. 2021. Characteristics and significance of carbonate cements in member 3 of Shahejie formation in the northern subsag of Laizhouwan Sag. Geological Journal of China Universities (in Chinese), 27(5): 526–535
|
Wang Qi, Zhuo Xizhun, Chen Guojun, et al. 2007. Characteristics of carbon and oxygen isotopic compositions of carbonate cements in Triassic Yanchang sandstone in Ordos Basin. Natural Gas Industry (in Chinese), 27(10): 28–32
|
Wei Wei, Zhu Xiaomin, Guo Dianbin, et al. 2015. Carbonate cements in Lower Cretaceous Bayingebi sandstone reservoirs in Chagan Sag, Yin-e Basin: Formation phases and formation mechanisms. Geochimica (in Chinese), 44(6): 590–599
|
Xiao Xiaoguang, Qin Lanzhi, Zhang Wu, et al. 2021. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag. Chinese Journal of Geology (in Chinese), 56(4): 1062–1076
|
Yang Pengcheng, Liu Feng, Shen Shan, et al. 2020. A study on the hydrocarbon generation potential of the coal-bearing source rocks in the Pinghu Formation of Pingbei area, the Xihu Depression. Marine Geology and Quaternary Geology (in Chinese), 40(4): 139–147
|
Yao Jingli, Wang Qi, Zhang Rui, et al. 2011. Origin and spatial distribution of carbonate cements in Yanchang Fm. (Triassic) sandstones within the lacustrine center of Ordos Basin, NW China. Natural Gas Geoscience (in Chinese), 22(6): 943–950
|
Zhang Xiulian. 1985. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater. Acta Sedimentologica Sinica (in Chinese), 3(4): 17–30
|
Zhang Qingqing, Liu Keyu, Liu Taixun, et al. 2021. Research status of the genesis of carbonate cementation in clastic reservoirs. Marine Origin Petroleum Geology (in Chinese), 26(3): 231–244
|
Zhang Gongcheng, Miao Shunde, Chen Ying, et al. 2013. Distribution of gas enrichment regions controlled by source rocks and geothermal heat in China offshore basins. Natural Gas Industry (in Chinese), 33(4): 1–17
|
Zhang Minqiang, Xu Fa, Zhang Jianpei, et al. 2011. Structural pattern during the rifting stage of the Xihu Sag and its control of sediment infilling. Marine Geology and Quaternary Geology (in Chinese), 31(5): 67–72. doi: 10.3724/SP.J.1140.2011.05067
|
Zhang Zhiyao, Zhang Changmin, Hou Guowei, et al. 2020. Microfacies distribution and sedimentary model of Pinghu Formation in P well area, East China Sea basin. Geology and Resources (in Chinese), 29(2): 142–151, 160
|
Zhao Xiaoqing, Bao Zhidong, Meng Yuanlin, et al. 2013. Distribution of carbonate cements in the Members 3 and 4 of Lower Cretaceous Quantou Formation of northern Songliao Basin and its main controling factors. Journal of Palaeogeography (in Chinese), 15(1): 125–134
|
Zheng Junmao, Ying Fengxiang. 1997. Reservoir characteristics and diagenetic model of sandstone intercalated in coal-bearing strata (acid water medium). Acta Petrolei Sinica (in Chinese), 18(4): 19–24
|
Zhou Xinhuai. 2020. Geological understanding and innovation in Xihu sag and breakthroughs in oil and gas exploration. China Offshore Oil and Gas, 32(1): 1–12
|
Zhu Erqin. 1986. Characteristics and origin of calcareous concretions in the Huanghai and the East China Seas. Acta Oceanologica Sinica, 5(1): 99–107
|
Zhuo Xizhun, Wang Qi, Li Juan, et al. 2013. Influence of early carbonate cementation on porosity evolution of sandstones in the Zhujiang Formation, Enping Sag, Pearl River Mouth Basin. Natural Gas Industry (in Chinese), 33(4): 26–30
|
Zou Mingliang, Huang Sijing, Hu Zuowei, et al. 2008. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea. Lithologic Reservoirs (in Chinese), 20(1): 47–52
|