Volume 42 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
Min Xu, Dujie Hou, Xiong Cheng, Jun Gan, Xinde Xu, Gang Liang, Wenjing Ding. Aliphatic biomarker signatures of early Oligocene−early Miocene source rocks in the central Qiongdongnan Basin: Source analyses of organic matter[J]. Acta Oceanologica Sinica, 2023, 42(3): 1-18. doi: 10.1007/s13131-022-2082-5
Citation: Min Xu, Dujie Hou, Xiong Cheng, Jun Gan, Xinde Xu, Gang Liang, Wenjing Ding. Aliphatic biomarker signatures of early Oligocene−early Miocene source rocks in the central Qiongdongnan Basin: Source analyses of organic matter[J]. Acta Oceanologica Sinica, 2023, 42(3): 1-18. doi: 10.1007/s13131-022-2082-5

Aliphatic biomarker signatures of early Oligocene−early Miocene source rocks in the central Qiongdongnan Basin: Source analyses of organic matter

doi: 10.1007/s13131-022-2082-5
Funds:  The National Natural Science Foundation of China under contract No. 41872131.
More Information
  • Corresponding author: houdj313@163.com
  • Received Date: 2022-02-23
  • Accepted Date: 2022-06-28
  • Available Online: 2022-09-16
  • Publish Date: 2023-03-25
  • The geochemical signatures of fifty-four rock samples and three supplementary drill stem test (DST) oils from the Yacheng-Sanya formations in the central Qiongdongnan Basin (CQB) were analysed. Reconstruction of the early Oligocene−early Miocene (36–16 Ma) palaeovegetation and source analyses of organic matter (OM) were conducted using aliphatic biomarkers in ancient sediments and DST oils. Both the interpreted aquatic and terrigenous OM contributed to the CQB source rocks (SRs) but had varying relative proportions. The four distribution patterns derived from n-alkanes, terpanes, and steranes are representative of four OM composition models of the Yacheng-Sanya SRs, including model A, model B, model C, and model D, which were classified based on the increasing contribution from terrigenous OM relative to aquatic OM. Some terrigenous higher plant-derived biomarkers, including oleanane, des-A-oleanane, C29 ααα 20R sterane, bicadinanes, the C19/(C19 + C23) tricyclic terpane ratio, and other n-alkane-derived ratios suggest that angiosperms had increased proportions in the palaeoflora from early Oligocene to early Miocene, and the bloom of terrigenous higher plants was observed during deposition of upper Lingshui Formation to lower Sanya Formation. These findings are consistent with the incremental total organic carbon and free hydrocarbons + potential hydrocarbons (S1 + S2) in the lower Lingshui-lower Sanya strata with a significant enrichment of OM in the E3l1-N1s2 shales. The maturity- and environment-sensitive aliphatic parameters of the CQB SRs and DST oils suggest that all the samples have predominantly reached their early oil-generation windows but have not exceeded the peak oil windows, except for some immature Sanya Formation shales. In addition, most of the OM in the analysed samples was characterised by mixed OM contributions under anoxic to sub-anoxic conditions. Furthermore, terrestrial-dominant SRs were interpreted to have developed mainly in the Lingshui-Sanya formations and were deposited in sub-oxic to oxic environments, compared to the anoxic to sub-anoxic conditions of the Yacheng Formation.
  • loading
  • Ahmed M, Volk H, Allan T, et al. 2012. Origin of oils in the eastern Papuan Basin, Papua New Guinea. Organic Geochemistry, 53: 137–152. doi: 10.1016/j.orggeochem.2012.06.002
    Albrecht P, Vandenbroucke M, Mandengué M. 1976. Geochemical studies on the organic matter from the Douala Basin (Cameroon)—I. Evolution of the extractable organic matter and the formation of petroleum. Geochimica et Cosmochimica Acta, 40(7): 791–799. doi: 10.1016/0016-7037(76)90031-4
    Alexander R, Larcher A V, Kagi R I, et al. 1988. The use of plant derived biomarkers for correlation of oils with source rocks in the Cooper/Eromanga Basin system, Australia. The APPEA Journal, 28(1): 310–324. doi: 10.1071/AJ87024
    Alkhafaji M W. 2021. Biomarker assessment of oil biodegradation, water washing, and source rock characteristics of oil seeps from the Foothill Zone along the Tigris River, Northern Iraq. Journal of Petroleum Science and Engineering, 197: 107946. doi: 10.1016/j.petrol.2020.107946
    Andrusevich V E, Engel M H, Zumberge J E, et al. 1998. Secular, episodic changes in stable carbon isotope composition of crude oils. Chemical Geology, 152(1–2): 59–72
    Blocho R M, Smith R W, Noll M R. 2021. Analyses of depositional environments of the Marcellus formation in New York using biomarker and trace metal proxies. Journal of Petroleum Exploration and Production Technology, 11(8): 3163–3175. doi: 10.1007/s13202-021-01237-8
    Bourbonniere R A, Meyers P A. 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41(2): 352–359. doi: 10.4319/lo.1996.41.2.0352
    Cao Ying, Li Chunfeng, Yao Yongjian. 2017. Thermal subsidence and sedimentary processes in the South China Sea Basin. Marine Geology, 394: 30–38. doi: 10.1016/j.margeo.2017.07.022
    Chattopadhyay A, Dutta S. 2014. Higher plant biomarker signatures of early Eocene sediments of North Eastern India. Marine and Petroleum Geology, 57: 51–67. doi: 10.1016/j.marpetgeo.2014.04.004
    Didyk B M, Simoneit B R T, Brassell S C, et al. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272(5650): 216–222. doi: 10.1038/272216a0
    Ding Wenjing, Hou Dujie, Gan Jun, et al. 2021. Palaeovegetation variation in response to the late Oligocene–early Miocene East Asian summer monsoon in the Ying-Qiong Basin, South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110205
    Ding Wenjing, Hou Dujie, Gan Jun, et al. 2022. Sedimentary geochemical records of late Miocene-early Pliocene palaeovegetation and palaeoclimate evolution in the Ying-Qiong Basin, South China Sea. Marine Geology, 445: 106750. doi: 10.1016/j.margeo.2022.106750
    Ding Wenjing, Hou Dujie, Zhang Weiwei, et al. 2018. A new genetic type of natural gases and origin analysis in northern Songnan-Baodao Sag, Qiongdongnan Basin, South China Sea. Journal of Natural Gas Science and Engineering, 50: 384–398. doi: 10.1016/j.jngse.2017.12.003
    Eglinton G, Hamilton R J. 1967. Leaf Epicuticular Waxes: The waxy outer surfaces of most plants display a wide diversity of fine structure and chemical constituents. Science, 156(3780): 1322–1335. doi: 10.1126/science.156.3780.1322
    Fan Caiwei, Xu Changgui, Xu Jie. 2021. Genesis and characteristics of miocene deep-water clastic rocks in Yinggehai and Qiongdongnan Basins, northern South China Sea. Acta Geologica Sinica (English Edition), 95(1): 153–166. doi: 10.1111/1755-6724.14637
    Fazeelat T, Asif M, Jalees M I, et al. 2011. Source correlation between biodegraded oil seeps and a commercial crude oil from the Punjab Basin, Pakistan. Journal of Petroleum Science and Engineering, 77(1): 1–9. doi: 10.1016/j.petrol.2011.01.003
    Fyhn M B W, Thomsen T B, Keulen N, et al. 2019. Detrital zircon ages and heavy mineral composition along the Gulf of Tonkin—Implication for sand provenance in the Yinggehai-Song Hong and Qiongdongnan basins. Marine and Petroleum Geology, 101: 162–179. doi: 10.1016/j.marpetgeo.2018.11.051
    Galarraga F, Urbani F, Escobar M, et al. 2010. Main factors controlling the compositional variability of seepage oils from Trujillo state, western Venezuela. Journal of Petroleum Geology, 33(3): 255–267. doi: 10.1111/j.1747-5457.2010.00477.x
    Gao Gang, Zhang Gongcheng, Chen Guo, et al. 2018. Geochemistry of borehole cutting shale and natural gas accumulation in the deepwater area of the Zhujiang River Mouth-Qiongdongnan Basin in the northern South China Sea. Acta Oceanologica Sinica, 37(2): 44–53. doi: 10.1007/s13131-018-1151-2
    Grantham P J, Posthuma J, Baak A. 1983. Triterpanes in a number of Far-Eastern crude oils. In: Bjory M, Albrecht C, eds. Advances in Organic Geochemistry 1981: International Conference Proceedings. Chichester: Blackwell, 710–724
    Guo Shusheng, Liao Gaolong, Liang Hao, et al. 2021. Major breakthrough and significance of deep-water gas exploration in Well BD21 in Qiongdongnan Basin. China Petroleum Exploration, 26(5): 49–59
    Haberer R M, Mangelsdorf K, Wilkes H, et al. 2006. Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada). Organic Geochemistry, 37(5): 519–538. doi: 10.1016/j.orggeochem.2006.01.004
    Hakimi M H, Abdullah E S, Ebiad M A, et al. 2021. Early mature sulfur-rich oils from the central gulf of Suez province: bulk property and geochemical investigations of maltene and asphaltene show source related-type. Arabian Journal of Geosciences, 14(12): 1119. doi: 10.1007/s12517-021-07280-3
    Hakimi M H, Mohialdeen I M J, Al Ahmed A A, et al. 2018. Thermal modeling and hydrocarbon generation of the late Jurassic–early Cretaceous Chia Gara Formation in Iraqi Kurdistan region, northern Zagros Fold Belt. Egyptian Journal of Petroleum, 27(4): 701–713. doi: 10.1016/j.ejpe.2017.10.007
    Hautevelle Y, Michels R, Malartre F, et al. 2006. Vascular plant biomarkers as proxies for palaeoflora and palaeoclimatic changes at the Dogger/Malm transition of the Paris Basin (France). Organic Geochemistry, 37(5): 610–625. doi: 10.1016/j.orggeochem.2005.12.010
    Hoş-Çebi F. 2017. Organic geochemical characteristics and paleoclimate conditions of the Miocene coals at the Çan-Durali (Çanakkale). Journal of African Earth Sciences, 129: 117–135. doi: 10.1016/j.jafrearsci.2016.12.003
    Huang Heting, Huang Baojia, Huang Yiwen, et al. 2017. Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in western South China Sea: A case study of Lingshui 17–2 gas field in Qiongdongnan Basin. Petroleum Exploration and Development, 44(3): 409–417. doi: 10.1016/S1876-3804(17)30047-2
    Huang Baojia, Li Li, Huang Heting. 2012. Origin and accumulation mechanism of shallow gases in the North Baodao Slope, Qiongdongnan Basin, South China Sea. Petroleum Exploration and Development, 39(5): 567–573. doi: 10.1016/S1876-3804(12)60077-9
    Huang Wen-Yen, Meinschein W G. 1979. Sterols as ecological indicators. Geochimica et Cosmochimica Acta, 43(5): 739–745. doi: 10.1016/0016-7037(79)90257-6
    Huang Baojia, Tian Hui, Li Xushen, et al. 2016. Geochemistry, origin and accumulation of natural gases in the deepwater area of the Qiongdongnan Basin, South China Sea. Marine and Petroleum Geology, 72: 254–267. doi: 10.1016/j.marpetgeo.2016.02.007
    Huang Baojia, Xiao Xianming, Li Xuxuan. 2003. Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan basins, offshore South China Sea. Organic Geochemistry, 34(7): 1009–1025. doi: 10.1016/S0146-6380(03)00036-6
    Izart A, Suarez-Ruiz I, Bailey J. 2015. Paleoclimate reconstruction from petrography and biomarker geochemistry from Permian humic coals in Sydney Coal Basin (Australia). International Journal of Coal Geology, 138: 145–157. doi: 10.1016/j.coal.2014.12.009
    Jeng W L. 2006. Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Marine Chemistry, 102(3–4): 242–251
    Jiang Lian, Ding Wenjing, George S C. 2020. Late Cretaceous–Paleogene palaeoclimate reconstruction of the Gippsland Basin, SE Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 556: 109885
    Jiang Lian, George S C. 2018. Biomarker signatures of Upper Cretaceous Latrobe Group hydrocarbon source rocks, Gippsland Basin, Australia: Distribution and palaeoenvironment significance of aliphatic hydrocarbons. International Journal of Coal Geology, 196: 29–42. doi: 10.1016/j.coal.2018.06.025
    Jiang Lian, George S C. 2019. Biomarker signatures of Upper Cretaceous Latrobe Group petroleum source rocks, Gippsland Basin, Australia: Distribution and geological significance of aromatic hydrocarbons. Organic Geochemistry, 138: 103905. doi: 10.1016/j.orggeochem.2019.103905
    Kennicutt M C, Barker C, Brooks J M, et al. 1987. Selected organic-matter source indicators in the orinoco, Nile and Changjiang deltas. Organic Geochemistry, 11(1): 41–51. doi: 10.1016/0146-6380(87)90050-7
    La Croix A D, He Jianhua, Bianchi V, et al. 2020. Early Jurassic palaeoenvironments in the Surat Basin, Australia—marine incursion into eastern Gondwana. Sedimentology, 67(1): 457–485. doi: 10.1111/sed.12649
    Lai Hongfei, Fang Yunxin, Kuang Zenggui, et al. 2021. Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan Basin, South China Sea: implications from site GMGS5-W08. Marine and Petroleum Geology, 123: 104774. doi: 10.1016/j.marpetgeo.2020.104774
    Large D J, Gize A P. 1996. Pristane/phytane ratios in the mineralized Kupferschiefer of the Fore-Sudetic Monocline, southwest Poland. Ore Geology Reviews, 11(1–3): 89–103
    Lei Chao, Clift P D, Ren Jianye, et al. 2019. A rapid shift in the sediment routing system of lower-upper Oligocene strata in the Qiongdongnnan Basin (Xisha Trough), Northwest South China Sea. Marine and Petroleum Geology, 104: 249–258. doi: 10.1016/j.marpetgeo.2019.03.012
    Li Chao, Lyu Chengfu, Chen Guojun, et al. 2019. Zircon U-Pb ages and REE composition constraints on the provenance of the continental slope-parallel submarine fan, western Qiongdongnan Basin, northern margin of the South China Sea. Marine and Petroleum Geology, 102: 350–362. doi: 10.1016/j.marpetgeo.2018.12.046
    Li Wenhao, Zhang Zhihuan. 2017. Paleoenvironment and its control of the formation of oligocene marine source rocks in the deep-water area of the northern South China Sea. Energy & Fuels, 31(10): 10598–10611
    Li Hangyu, Zhang Ming, Lau H C, et al. 2020. China’s deepwater development: subsurface challenges and opportunities. Journal of Petroleum Science and Engineering, 195: 107761. doi: 10.1016/j.petrol.2020.107761
    Li Wenhao, Zhang Zhihuan, Li Youchuan, et al. 2012. New perspective of Miocene marine hydrocarbon source rocks in deep-water area in Qiongdongnan Basin of northern South China Sea. Acta Oceanologica Sinica, 31(5): 107–114. doi: 10.1007/s13131-012-0241-9
    Li Wenhao, Zhang Zhihuan, Li Youchuan, et al. 2013. The main controlling factors and developmental models of Oligocene source rocks in the Qiongdongnan Basin, northern South China Sea. Petroleum Science, 10(2): 161–170. doi: 10.1007/s12182-013-0263-8
    Liu Zhen, Sun Zhipeng, Wang Zisong, et al. 2016a. Evaluation of abundant hydrocarbon-generation depressions in the deepwater area of Qiongdongnan Basin, South China Sea. Acta Oceanologica Sinica, 35(2): 137–144. doi: 10.1007/s13131-015-0784-7
    Liu Zhifei, Zhao Yulong, Colin C, et al. 2016b. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153: 238–273. doi: 10.1016/j.earscirev.2015.08.005
    Mathur N. 2014. Tertiary oils from Upper Assam Basin, India: a geochemical study using terrigenous biomarkers. Organic Geochemistry, 76: 9–25. doi: 10.1016/j.orggeochem.2014.07.007
    Miao Yufa, Warny S, Clift P D, et al. 2018. Climatic or tectonic control on organic matter deposition in the South China Sea? A lesson learned from a comprehensive Neogene palynological study of IODP Site U1433. International Journal of Coal Geology, 190: 166–177. doi: 10.1016/j.coal.2017.10.003
    Mohamed N S, El Nady M M, Sharaf L M. 2018. Evaluation of possible source rocks and extracts characteristics from Safir-1x well, North Western Desert, Egypt. Petroleum Science and Technology, 36(16): 1235–1241. doi: 10.1080/10916466.2018.1465974
    Moldowan J M, Dahl J, Huizinga B J, et al. 1994. The molecular fossil record of oleanane and its relation to angiosperms. Science, 265(5173): 768–771. doi: 10.1126/science.265.5173.768
    Murray A P, Sosrowidjojo I B, Alexander R, et al. 1997. Oleananes in oils and sediments: Evidence of marine influence during early diagenesis?. Geochimica et Cosmochimica Acta, 61(6): 1261–1276
    Nytoft H P, Kildahl-Andersen G, Samuel O J. 2010. Rearranged oleananes: Structural identification and distribution in a worldwide set of late Cretaceous/Tertiary oils. Organic Geochemistry, 41(10): 1104–1118. doi: 10.1016/j.orggeochem.2010.06.008
    Otto A, Simoneit B R T, Rember W C. 2005. Conifer and angiosperm biomarkers in clay sediments and fossil plants from the Miocene Clarkia Formation, Idaho, USA. Organic Geochemistry, 36(6): 907–922. doi: 10.1016/j.orggeochem.2004.12.004
    Ourisson G, Albrecht P, Rohmer M. 1979. The hopanoids: palaeochemistry and biochemistry of a group of natural products. Pure and Applied Chemistry, 51(4): 709–729. doi: 10.1351/pac197951040709
    Ourisson G, Albrecht P, Rohmer M. 1982. Predictive microbial biochemistry—from molecular fossils to procaryotic membranes. Trends in Biochemical Sciences, 7(7): 236–239. doi: 10.1016/0968-0004(82)90028-7
    Paul S, Sharma J, Singh B D, et al. 2015. Early Eocene equatorial vegetation and depositional environment: Biomarker and palynological evidences from a lignite-bearing sequence of Cambay Basin, western India. International Journal of Coal Geology, 149: 77–92. doi: 10.1016/j.coal.2015.06.017
    Peters K E, Fraser T H, Amris W, et al. 1999. Geochemistry of crude oils from eastern Indonesia. AAPG Bulletin, 83(12): 1927–1942
    Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide. Cambridge: Cambridge University Press
    Philp R P, Gilbert T D. 1986. Biomarker distributions in australian oils predominantly derived from terrigenous source material. Organic Geochemistry, 10(1–3): 73–84
    Preston J C, Edwards D. 2000. The petroleum geochemistry of oils and source rocks from the northern Bonaparte Basin, offshore northern Australia. The APPEA Journal, 40(1): 257–282. doi: 10.1071/AJ99014
    Ren Jianye, Lei Chao, Wang Shan, et al. 2011. Tectonic stratigraphic framework of Yinggehai-Qiongdongnan Basins and its implication for tectonic province division in South China Sea. Chinese Journal of Geophysics, 54(12): 3303–3314
    Ren Jinfeng, Wang Hua, Sun Ming, et al. 2014. Sequence stratigraphy and sedimentary facies of lower Oligocene Yacheng Formation in deepwater area of Qiongdongnan Basin, northern South China Sea: implications for coal-bearing source rocks. Journal of Earth Science, 25(5): 871–883. doi: 10.1007/s12583-014-0479-6
    Ren Jinfeng, Zhang Yingzhao, Wang Hua, et al. 2015. Identification methods of coal-bearing source rocks for Yacheng Formation in the western deepwater area of South China Sea. Acta Oceanologica Sinica, 34(4): 19–31. doi: 10.1007/s13131-015-0647-2
    Rudra A, Dutta S, Raju S V. 2017. The Paleogene vegetation and petroleum system in the tropics: A biomarker approach. Marine and Petroleum Geology, 86: 38–51. doi: 10.1016/j.marpetgeo.2017.05.008
    Samad S K, Mishra D K, Mathews R P, et al. 2020. Geochemical attributes for source rock and palaeoclimatic reconstruction of the Auranga Basin, India. Journal of Petroleum Science and Engineering, 185: 106665. doi: 10.1016/j.petrol.2019.106665
    Seifert W K, Moldowan M J. 1978. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta, 42(1): 77–95. doi: 10.1016/0016-7037(78)90219-3
    Seifert W K, Moldowan J M. 1986. Use of biological markers in petroleum exploration. In: Johns R B, ed. Methods in Geochemistry and Geophysics. Msterdam: Elsevier, 261–290
    Simoneit B R T, Oros D R, Karwowski Ł, et al. 2020. Terpenoid biomarkers of ambers from Miocene tropical paleoenvironments in Borneo and of their potential extant plant sources. International Journal of Coal Geology, 221: 103430. doi: 10.1016/j.coal.2020.103430
    Su Ao, Chen Honghan, Chen Xu, et al. 2018. New insight into origin, accumulation and escape of natural gas in the Songdong and Baodao regions in the eastern Qiongdongnan Basin, South China Sea. Journal of Natural Gas Science and Engineering, 52: 467–483. doi: 10.1016/j.jngse.2018.01.026
    Su Ao, Chen Honghan, He Cong, et al. 2017. Complex accumulation and leakage of YC21–1 gas bearing structure in Yanan Sag, Qiongdongnan Basin, South China Sea. Marine and Petroleum Geology, 88: 798–813. doi: 10.1016/j.marpetgeo.2017.09.020
    Su Long, Zheng Jianjing, Chen Guojun, et al. 2012. The upper limit of maturity of natural gas generation and its implication for the Yacheng Formation in the Qiongdongnan Basin, China. Journal of Asian Earth Sciences, 54–55: 203–213
    Tamburini F, Adatte T, Föllmi K, et al. 2003. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0–140 000 years): Mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea. Marine Geology, 201(1–3): 147–168
    Ten Haven H L, De Leeuw J W, Schenck P A. 1985. Organic geochemical studies of a Messinian evaporitic basin, northern Apennines (Italy) I: Hydrocarbon biological markers for a hypersaline environment. Geochimica et Cosmochimica Acta, 49(10): 2181–2191. doi: 10.1016/0016-7037(85)90075-4
    Ten Haven H L, Rullkötter J. 1988. The diagenetic fate of taraxer-14-ene and oleanene isomers. Geochimica et Cosmochimica Acta, 52(10): 2543–2548. doi: 10.1016/0016-7037(88)90312-2
    Ten Haven H L, Rullkötter J, De Leeuw J W, et al. 1988. Pristane/phytane ratio as environmental indicator. Nature, 333(6174): 604–604
    Van Aarssen B G K, Alexander R, Kagi R I. 2000. Higher plant biomarkers reflect palaeovegetation changes during Jurassic times. Geochimica et Cosmochimica Acta, 64(8): 1417–1424. doi: 10.1016/S0016-7037(99)00432-9
    Van Aarssen B G K, Hessels J K C, Abbink O A, et al. 1992. The occurrence of polycyclic sesqui-, tri-, and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from Southeast Asia. Geochimica et Cosmochimica Acta, 56(3): 1231–1246. doi: 10.1016/0016-7037(92)90059-R
    Volkman J K. 2005. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. Organic Geochemistry, 36(2): 139–159. doi: 10.1016/j.orggeochem.2004.06.013
    Vuković N, Životić D, Filho J G M, et al. 2016. The assessment of maturation changes of humic coal organic matter—Insights from closed-system pyrolysis experiments. International Journal of Coal Geology, 154–155: 213–239
    Wang Dongdong, Dong Guoqi, Zhang Gongcheng, et al. 2020. Coal seam development characteristics and distribution predictions in marginal sea basins: Oligocene Yacheng Formation coal measures, Qiongdongnan Basin, northern region of the South China Sea. Australian Journal of Earth Sciences, 67(3): 393–409. doi: 10.1080/08120099.2019.1661286
    Wang Zhengfeng, Jiang Tao, Zhang Daojun, et al. 2015a. Evolution of deepwater sedimentary environments and its implication for hydrocarbon exploration in Qiongdongnan Basin, northwestern South China Sea. Acta Oceanologica Sinica, 34(4): 1–10. doi: 10.1007/s13131-015-0645-4
    Wang Ce, Liang Xinquan, Foster D A, et al. 2016. Zircon U-Pb geochronology and heavy mineral composition constraints on the provenance of the middle Miocene deep-water reservoir sedimentary rocks in the Yinggehai-Song Hong Basin, South China Sea. Marine and Petroleum Geology, 77: 819–834. doi: 10.1016/j.marpetgeo.2016.05.009
    Wang Zhengfeng, Liu Zhen, Cao Shang, et al. 2014a. Vertical migration through faults and hydrocarbon accumulation patterns in deepwater areas of the Qiongdongnan Basin. Acta Oceanologica Sinica, 33(12): 96–106. doi: 10.1007/s13131-014-0579-2
    Wang Zhengfeng, Shi Xiaobin, Yang Jun, et al. 2014b. Analyses on the tectonic thermal evolution and influence factors in the deep-water Qiongdongnan Basin. Acta Oceanologica Sinica, 33(12): 107–117. doi: 10.1007/s13131-014-0580-9
    Wang Zhengfeng, Sun Zhipeng, Zhang Daojun, et al. 2015b. Geology and hydrocarbon accumulations in the deepwater of the northwestern South China Sea—with focus on natural gas. Acta Oceanologica Sinica, 34(10): 57–70. doi: 10.1007/s13131-015-0715-7
    Wang Zhenfeng, Sun Zhipeng, Zhu Jitian, et al. 2015c. Natural gas geological characteristics and great discovery of large gas fields in deep-water area of the western South China Sea. Natural Gas Industry B, 2(6): 489–498. doi: 10.1016/j.ngib.2016.03.001
    Wang Dongdong, Zhang Gongcheng, Li Zengxue, et al. 2021. The development characteristics and distribution predictions of the Paleogene coal-measure source rock in the Qiongdongnan Basin, northern South China Sea. Acta Geologica Sinica (English Edition), 95(1): 105–120. doi: 10.1111/1755-6724.14625
    Webster P J. 1994. The role of hydrological processes in ocean-atmosphere interactions. Reviews of Geophysics, 32(4): 427–476. doi: 10.1029/94RG01873
    Wingert W S, Pomerantz M. 1986. Structure and significance of some twenty-one and twenty-two carbon petroleum steranes. Geochimica et Cosmochimica Acta, 50(12): 2763–2769. doi: 10.1016/0016-7037(86)90225-5
    Wu Piao, Hou Dujie, Gan Jun, et al. 2018a. Paleoenvironment and controlling factors of Oligocene source rock in the eastern deep-water area of the Qiongdongnan Basin: evidences from organic geochemistry and palynology. Energy & Fuels, 32(7): 7423–7437
    Wu Xiaochuan, Pu Renhai, Chen Ying, et al. 2018b. Seismic analysis of early-mid Miocene carbonate platform in the southern Qiongdongnan Basin, South China Sea. Acta Oceanologica Sinica, 37(2): 54–65. doi: 10.1007/s13131-017-1128-6
    Wu Guoxuan, Qin Jungan, Mao Caizhi. 2003. Deep-water Oligocene pollen record from South China Sea. Chinese Science Bulletin, 48(22): 2511–2515
    Xiao Xianming, Xiong M, Tian Hui, et al. 2006. Determination of the source area of the Ya13–1 gas pool in the Qiongdongnan Basin, South China Sea. Organic Geochemistry, 37(9): 990–1002. doi: 10.1016/j.orggeochem.2006.06.001
    Xu Min, Hou Dujie, Lin Xiaoyun, et al. 2022. Organic geochemical signatures of source rocks and oil-source correlation in the Papuan Basin, Papua New Guinea. Journal of Petroleum Science and Engineering, 210: 109972. doi: 10.1016/j.petrol.2021.109972
    Yang Gengxiong, Yin Hongwei, Gan Jun, et al. 2022. Explaining structural difference between the eastern and western zones of the Qiongdongnan Basin, northern South China Sea: insights from scaled physical models. Tectonics, 41(2): e2021TC006899
    Zhang Gongcheng, Wang Dongdong, Zeng Qingbo, et al. 2019. Characteristics of coal-measure source rock and gas accumulation belts in marine-continental transitional facies fault basins: A case study of the Oligocene deposits in the Qiongdongnan Basin located in the northern region of the South China Sea. Energy Exploration & Exploitation, 37(6): 1752–1778
    Zhang Gongcheng, Zeng Qingbo, Su Long, et al. 2016. Accumulation mechanism of LS 17–2 deep water giant gas field in Qiongdongnan Basin. Acta Petrolei Sinica, 37(S1): 34–46
    Zhao Rui, Chen Si, Olariu C, et al. 2019. A model for oblique accretion on the South China Sea margin; Red River (Song Hong) sediment transport into Qiongdongnan Basin since upper Miocene. Marine Geology, 416: 106001. doi: 10.1016/j.margeo.2019.106001
    Zhao Meng, Shao Lei, Liang Jianshe, et al. 2015. No Red River capture since the late Oligocene: Geochemical evidence from the northwestern South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 122: 185–194. doi: 10.1016/j.dsr2.2015.02.029
    Zhou Yi, Sheng Guoying, Fu Jiamo, et al. 2003. Triterpane and sterane biomarkers in the YA13–1 condensates from Qiongdongnan Basin, South China Sea. Chemical Geology, 199(3–4): 343–359
    Zhu Weilin, Shi Hesheng, Huang Baojia, et al. 2021. Geology and geochemistry of large gas fields in the deepwater areas, continental margin basins of northern South China Sea. Marine and Petroleum Geology, 126: 104901. doi: 10.1016/j.marpetgeo.2021.104901
    Zhu Yangming, Sun Linting, Hao Fang, et al. 2018. Geochemical composition and origin of Tertiary oils in the Yinggehai and Qiongdongnan Basins, offshore South China Sea. Marine and Petroleum Geology, 96: 139–153. doi: 10.1016/j.marpetgeo.2018.05.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (694) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return