Citation: | Lingbo Li, Feng Cai, Hongshuai Qi, Lulu Qiao, Shaohua Zhao, Gen Liu, Jianhui Liu. Typhoon vs. cold wave: a comparative assessment of geomorphic response and boulder displacement using RFID technology[J]. Acta Oceanologica Sinica, 2023, 42(7): 25-40. doi: 10.1007/s13131-022-2083-4 |
Allan J C, Hart R, Tranquili J V. 2006. The use of Passive Integrated Transponder (PIT) tags to trace cobble transport in a mixed sand-and-gravel beach on the high-energy Oregon coast, USA. Marine Geology, 232(1–2): 63–86
|
Autret R, Dodet G, Suanez S, et al. 2018. Long–term variability of supratidal coastal boulder activation in Brittany (France). Geomorphology, 304: 184–200. doi: 10.1016/j.geomorph.2017.12.028
|
Bagnold R A. 1940. Beach formation by waves: some model experiments in a wave tank (includes photographs). Journal of the Institution of Civil Engineers, 15(1): 27–52
|
Brayne R P. 2016. The Relationship between nearshore wave conditions and coarse clastic beach dynamics [dissertation]. Falmouth: University of Exeter
|
Brayne R P, Lorang M S, Naylor L A, et al. 2020. Field-based observation of the entrainment threshold of cobbles with motion loggers. Journal of Coastal Research, 95(sp1): 392–397. doi: 10.2112/SI95-076.1
|
Cai Feng, Su Xianze, Liu Jianhui, et al. 2009. Coastal erosion in China under the condition of global climate change and measures for its prevention. Progress in Natural Science, 19(4): 415–426. doi: 10.1016/j.pnsc.2008.05.034
|
Chapuis M, Dufour S, Provansal M, et al. 2015. Coupling channel evolution monitoring and RFID tracking in a large, wandering, gravel-bed river: insights into sediment routing on geomorphic continuity through a riffle–pool sequence. Geomorphology, 231: 258–269. doi: 10.1016/j.geomorph.2014.12.013
|
Chen Bin, Chen Zhongyuan, Stephenson W, et al. 2011. Morphodynamics of a boulder beach, Putuo Island, SE China coast: the role of storms and typhoon. Marine Geology, 283(1–4): 106–115
|
Corey A T. 1949. Influence of shape on the fall velocity of sand grains [dissertation]. Fort Collins: Colorado State University
|
Cox R. 2019. Very large boulders were moved by storm waves on the west coast of Ireland in winter 2013–2014. Marine Geology, 412: 217–219. doi: 10.1016/j.margeo.2018.07.016
|
Dickson M E, Kench P S, Kantor M S. 2011. Longshore transport of cobbles on a mixed sand and gravel beach, southern Hawke Bay, New Zealand. Marine Geology, 287(1–4): 31–42
|
Emery K O. 1968. Relict sediments on continental shelves of the world. AAPG Bulletin, 52(3): 445–464
|
Etienne S, Buckley M, Paris R, et al. 2011. The use of boulders for characterising past tsunamis: lessons from the 2004 Indian Ocean and 2009 South Pacific tsunamis. Earth-Science Reviews, 107(1–2): 76–90
|
Fellowes T E, Vila-Concejo A, Gallop S L, et al. 2022. Wave shadow zones as a primary control of storm erosion and recovery on embayed beaches. Geomorphology, 399: 108072. doi: 10.1016/j.geomorph.2021.108072
|
Feng Shizuo. 1998. The advance of researches on storm surges. World Sci-Tech R& D (in Chinese), 20(4): 44–47
|
Flemming B W. 2011. Geology, morphology, and sedimentology of estuaries and coasts. In: Wolanski E, McLusky D, eds. Treatise on Estuarine and Coastal Science. Amsterdam: Elsevier Press, 7–38
|
Gómez-Pazo A, Pérez-Alberti A, Trenhaile A. 2021. Tracking clast mobility using RFID sensors on a boulder beach in Galicia, NW Spain. Geomorphology, 373: 107514. doi: 10.1016/j.geomorph.2020.107514
|
Goto K, Miyagi K, Kawamata H, et al. 2010. Discrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan. Marine Geology, 269(1–2): 34–45
|
Green A, Cooper A, Salzmann L. 2016. Longshore size grading on a boulder beach. Journal of Sedimentary Research, 86(10): 1123–1128. doi: 10.2110/jsr.2016.71
|
Grottoli E, Bertoni D, Ciavola P, et al. 2015. Short term displacements of marked pebbles in the swash zone: focus on particle shape and size. Marine Geology, 367: 143–158. doi: 10.1016/j.margeo.2015.06.006
|
Grottoli E, Bertoni D, Pozzebon A, et al. 2019. Influence of particle shape on pebble transport in a mixed sand and gravel beach during low energy conditions: implications for nourishment projects. Ocean & Coastal Management, 169: 171–181
|
Hall A M, Hansom J D, Williams D M, et al. 2006. Distribution, geomorphology and lithofacies of cliff-top storm deposits: examples from the high-energy coasts of Scotland and Ireland. Marine Geology, 232(3–4): 131–155
|
Hastewell L, Inkpen R, Bray M, et al. 2020. Quantification of contemporary storm-induced boulder transport on an intertidal shore platform using radio frequency identification technology. Earth Surface Processes and Landforms, 45(7): 1601–1621. doi: 10.1002/esp.4834
|
Hastewell L J, Schaefer M, Bray M, et al. 2019. Intertidal boulder transport: a proposed methodology adopting Radio Frequency Identification (RFID) technology to quantify storm induced boulder mobility. Earth Surface Processes and Landforms, 44(3): 681–698. doi: 10.1002/esp.4523
|
Hayes M O. 1967. Relationship between coastal climate and bottom sediment type on the inner continental shelf. Marine Geology, 5(2): 111–132. doi: 10.1016/0025-3227(67)90074-6
|
Huang Yusheng, Cai Chuanrong, Zhou Hong. 1992. The volcanic rocks in Pintang Island, Fujian and their plate collision tectonics. Journal of Fuzhou University (Natural Science) (in Chinese), 20(4): 99–105
|
Kennedy A B, Mori N, Yasuda T, et al. 2017. Extreme block and boulder transport along a cliffed coastline (Calicoan Island, Philippines) during Super Typhoon Haiyan. Marine Geology, 383: 65–77. doi: 10.1016/j.margeo.2016.11.004
|
Komar P D. 1998. Beach Processes and Sedimentation. 2nd ed. Upper Saddle River: Prentice Hall Press, 544
|
Leatherman S P, Zhang Keqi, Douglas B C. 2000. Sea level rise shown to drive coastal erosion. Eos, Transactions American Geophysical Union, 81(6): 55–57
|
Lorang M S. 2000. Predicting threshold entrainment mass for a boulder beach. Journal of Coastal Research, 16(2): 432–445
|
Lorang M S. 2011. A wave-competence approach to distinguish between boulder and megaclast deposits due to storm waves versus tsunamis. Marine Geology, 283(1–4): 90–97
|
Nandasena N A K, Paris R, Tanaka N. 2011. Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Marine Geology, 281(1–4): 70–84
|
Naylor L A, Stephenson W J, Smith H C M, et al. 2016. Geomorphological control on boulder transport and coastal erosion before, during and after an extreme extra-tropical cyclone. Earth Surface Processes and Landforms, 41(5): 685–700. doi: 10.1002/esp.3900
|
Noormets R, Crook K A W, Felton E A. 2004. Sedimentology of rocky shorelines: 3. : hydrodynamics of megaclast emplacement and transport on a shore platform, Oahu, Hawaii. Sedimentary Geology, 172(1–2): 41–65
|
Nott J. 1997. Extremely high-energy wave deposits inside the Great Barrier Reef, Australia: determining the cause—tsunami or tropical cyclone. Marine Geology, 141(1–4): 193–207
|
Nott J. 2003a. Waves, coastal boulder deposits and the importance of the pre-transport setting. Earth and Planetary Science Letters, 210(1–2): 269–276
|
Nott J. 2003b. Tsunami or storm waves?—Determining the origin of a spectacular field of wave emplaced boulders using numerical storm surge and wave models and hydrodynamic transport equations. Journal of Coastal Research, 19(2): 348–356
|
Oak H L. 1981. Boulder beaches: a sedimentological study [dissertation]. Sydney: Macquarie University
|
Oak H L. 1984. The boulder beach: a fundamentally distinct sedimentary assemblage. Annals of the Association of American Geographers, 74(1): 71–82. doi: 10.1111/j.1467-8306.1984.tb01435.x
|
Oak H L. 1986. Process inference from coastal-protection structures to boulder beaches. Geografiska Annaler: Series A, Physical Geography, 68(1–2): 25–31
|
Oetjen J, Engel M, Schüttrumpf H. 2021. Experiments on tsunami induced boulder transport—A review. Earth-Science Reviews, 220: 103714. doi: 10.1016/j.earscirev.2021.103714
|
Paris R, Naylor L A, Stephenson W J. 2011. Boulders as a signature of storms on rock coasts. Marine Geology, 283(1–4): 1–11
|
Pérez-Alberti A, Trenhaile A S. 2015a. An initial evaluation of drone-based monitoring of boulder beaches in Galicia, North-western Spain. Earth Surface Processes and Landforms, 40(1): 105–111. doi: 10.1002/esp.3654
|
Pérez-Alberti A, Trenhaile A S. 2015b. Clast mobility within boulder beaches over two winters in Galicia, northwestern Spain. Geomorphology, 248: 411–426. doi: 10.1016/j.geomorph.2015.08.001
|
Qi Hongshuai, Cai Feng, Lei Gang, et al. 2010. The response of three main beach types to tropical storms in South China. Marine Geology, 275(1–4): 244–254
|
Qu Wenjun, Wang Jun, Zhang Xiaoye, et al. 2015. Effect of cold wave on winter visibility over eastern China. Journal of Geophysical Research: Atmospheres, 120(6): 2394–2406. doi: 10.1002/2014JD021958
|
Shu Fangfang, Cai Feng, Qi Hongshuai, et al. 2019. Morphodynamics of an artificial cobble beach in Tianquan Bay, Xiamen, China. Journal of Ocean University of China, 18(4): 868–882. doi: 10.1007/s11802-019-3860-3
|
Stolle J, Takabatake T, Hamano G, et al. 2019. Debris transport over a sloped surface in tsunami-like flow conditions. Coastal Engineering Journal, 61(2): 241–255. doi: 10.1080/21664250.2019.1586288
|
Sun Quan. 2019. Study on the characteristics of particle movement and morphodynamic process on coastal gravel beach based on the RFID tracking (in Chinese) [dissertation]. Qingdao: Ocean University of China
|
Weiss R. 2012. The mystery of boulders moved by tsunamis and storms. Marine Geology, 295–298: 28–33
|
Weiss R, Diplas P. 2015. Untangling boulder dislodgement in storms and tsunamis: is it possible with simple theories?. Geochemistry, Geophysics, Geosystems, 16(3): 890–898
|
Williams A T, Rangel-Buitrago N, Pranzini E, et al. 2018. The management of coastal erosion. Ocean & Coastal Management, 156: 4–20
|
Wilson K, Mohrig D. 2021. Modern coastal tempestite deposition by a non-local storm: swell-generated transport of sand and boulders on Eleuthera, The Bahamas. Sedimentology, 68(5): 2043–2068. doi: 10.1111/sed.12842
|
Wu Zuhang, Zhang Yun, Zhang Lifeng, et al. 2022. A comparison of convective and stratiform precipitation microphysics of the record-breaking typhoon in-Fa (2021). Remote Sensing, 14(2): 344. doi: 10.3390/rs14020344
|
Zhang Keqi, Douglas B C, Leatherman S P. 2004. Global warming and coastal erosion. Climatic Change, 64(1–2): 41
|
Zhao Peng, Jiang Wensheng. 2011. A numerical study of storm surges caused by cold-air outbreaks in the Bohai Sea. Natural Hazards, 59(1): 1–15. doi: 10.1007/s11069-010-9690-7
|