Volume 42 Issue 5
May  2023
Turn off MathJax
Article Contents
Durbar Ray, Anil L. Paropkari. Mineralogy and geochemistry of hydrothermal sulphide from a submarine volcanic high at 18°36.4'S Central Lau Spreading Center, Southwest Pacific[J]. Acta Oceanologica Sinica, 2023, 42(5): 93-101. doi: 10.1007/s13131-022-2121-2
Citation: Durbar Ray, Anil L. Paropkari. Mineralogy and geochemistry of hydrothermal sulphide from a submarine volcanic high at 18°36.4'S Central Lau Spreading Center, Southwest Pacific[J]. Acta Oceanologica Sinica, 2023, 42(5): 93-101. doi: 10.1007/s13131-022-2121-2

Mineralogy and geochemistry of hydrothermal sulphide from a submarine volcanic high at 18°36.4'S Central Lau Spreading Center, Southwest Pacific

doi: 10.1007/s13131-022-2121-2
More Information
  • Corresponding author: dray@nio.org
  • Received Date: 2022-05-02
  • Accepted Date: 2022-09-20
  • Available Online: 2023-03-07
  • Publish Date: 2023-05-25
  • We report the mineralogy and geochemistry of hydrothermal sulphide from the crater of a volcanic high near 18°36.4′S of the Central Lau Spreading Center. During 1990s, that volcanic structure was reported active and sulphide samples were collected by MIR submersible. A section of a chimney-like structure from the crater-floor was studied here. The Fe-depleted sphalerites, and Co-depleted pyrites in that chimney were similar to those commonly found in low to moderate temperature (<300℃) sulphides from sediment-starved hydrothermal systems. Bulk analyses of three parts of that chimney section showed substantial enrichment of Zn (18%–20%) and Fe (14%–27%) but depletion of Cu (0.8%–1.3%). In chondrite-normalized rare earth element-patterns, the significant negative Ce-anomalies (Ce/Ce*=0.27–0.39) and weakly positive Eu-anomalies (Eu/Eu*=1.60–1.68) suggested sulphide mineralisation took place from reduced low-temperature fluid. The depleted concentration of lithophiles in this sulphide indicates restricted contribution of sub-ducting plate in genesis of source fluid as compared to those from other parts of Lau Spreading Centre. Uniform mineralogy and bulk composition of subsamples across the chimney section suggests barely any alteration of fluid composition and/or mode of mineralisation occurred during its growth.
  • loading
  • Anders E, Grevesse N. 1989. Abundances of the elements: meteoritic and solar. Geochimica et Cosmochimica Acta, 53(1): 197–214. doi: 10.1016/0016-7037(89)90286-X
    Barrett T J, Jarvis I, Jarvis K E. 1990. Rare earth element geochemistry of massive sulfides-sulfates and gossans on the Southern Explorer Ridge. Geology, 18(7): 583–586. doi: 10.1130/0091-7613(1990)018<0583:REEGOM>2.3.CO;2
    Bau M, Mӧller P, Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56(1–2): 123–131
    Bendel V, Fouquet Y, Auzende J M, et al. 1993. The White Lady hydrothermal field, north Fiji Back-Arc Basin, Southwest Pacific. Economic Geology, 88(8): 2237–2245. doi: 10.2113/gsecongeo.88.8.2237
    Dekov V M, Lalonde S V, Kamenov G D, et al. 2015. Geochemistry and mineralogy of a silica chimney from an inactive seafloor hydrothermal field (East Pacific Rise, 18°S). Chemical Geology, 415: 126–140. doi: 10.1016/j.chemgeo.2015.09.017
    Embley R W, Baker E T, Chadwick Jr W W, et al. 2004. Explorations of Mariana arc volcanoes reveal new hydrothermal systems. EOS, Transactions American Geophysical Union, 85(4): 37–40
    Evans G N, Tivey M K, Seewald J S, et al. 2017. Influences of the Tonga Subduction Zone on seafloor massive sulfide deposits along the Eastern Lau Spreading Center and Valu Fa Ridge. Geochimica et Cosmochimica Acta, 215: 214–246. doi: 10.1016/j.gca.2017.08.010
    Falloon T J, Malahoff A, Zonenshain L P, et al. 1992. Petrology and Geochemistry of back-arc basin basalts from Lau Basin spreading ridges at 15°, 18° and 19°S. Mineralogy and Petrology, 47(1): 1–35. doi: 10.1007/BF01165295
    Fouquet Y, Cambon P, Etoubleau J, et al. 2010. Geodiversity of hydrothermal processes along the Mid-Atlantic ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. In: Rona P A, Devey C W, Dyment J, et al., eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington: American Geophysical Union, 321–367
    Fouquet Y, von Stackelberg U, Charlou J L, et al. 1991. Hydrothermal activity in the Lau back-arc basin: sulfides and water chemistry. Geology, 19(4): 303–306. doi: 10.1130/0091-7613(1991)019<0303:HAITLB>2.3.CO;2
    Glasby G P, Iizasa K, Yuasa M, et al. 2000. Submarine hydrothermal mineralization on the Izu–bonin arc, south of Japan: an overview. Marine Georesources & Geotechnology, 18(2): 141–176
    Glasby G P, Notsu K. 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geology Reviews, 23(3–4): 299–339
    Grant H L J, Hannington M D, Petersen S, et al. 2018. Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic ridge, based on LA-ICP-MS analyses of pyrite. Chemical Geology, 498: 45–71. doi: 10.1016/j.chemgeo.2018.08.019
    Hawkins Jr J W. 1995. The geology of the Lau Basin. In: Taylor B, ed. Backarc Basins: Tectonics and Magmatism. Boston: Springer, 63–138
    Hein J R, de Ronde C E J, Koski R A, et al. 2014. Layered hydrothermal barite-sulfide mound field, East Diamante caldera, Mariana volcanic arc. Economic Geology, 109(8): 2179–2206. doi: 10.2113/econgeo.109.8.2179
    Hongo Y, Nozaki Y. 2001. Rare earth element geochemistry of hydrothermal deposits and Calyptogena shell from the Iheya ridge vent field, Okinawa Trough. Geochemical Journal, 35(5): 347–354. doi: 10.2343/geochemj.35.347
    James R H, Elderfield H. 1996. Chemistry of ore-forming fluids and mineral formation rates in an active hydrothermal sulfide deposit on the Mid-Atlantic Ridge. Geology, 24(12): 1147–1150. doi: 10.1130/0091-7613(1996)024<1147:COOFFA>2.3.CO;2
    James R H, Green D R H, Stock M J, et al. 2014. Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre. Geochimica et Cosmochimica Acta, 139: 47–71. doi: 10.1016/j.gca.2014.04.024
    Karig D E. 1970. Ridges and basins of the Tonga-Kermadec island arc system. Journal of Geophysical Research, 75(2): 239–254. doi: 10.1029/JB075i002p00239
    Keith M, Haase K M, Schwarz-Schampera U, et al. 2014. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology, 42(8): 699–702. doi: 10.1130/G35655.1
    Keith M, Häckel F, Haase K M, et al. 2016. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geology Reviews, 72: 728–745. doi: 10.1016/j.oregeorev.2015.07.012
    Kim J, Son S K, Son J W, et al. 2009. Venting sites along the Fonualei and Northeast Lau Spreading Centers and evidence of hydrothermal activity at an off-axis caldera in the northeastern Lau Basin. Geochemical Journal, 43(1): 1–13. doi: 10.2343/geochemj.0.0164
    Koski R A, Jonasson I R, Kadko D C, et al. 1994. Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research, 99(B3): 4813–4832. doi: 10.1029/93JB02871
    Lehrmann B, Stobbs I J, Lusty P A J, et al. 2018. Insights into extinct seafloor massive sulfide mounds at the TAG, Mid-Atlantic ridge. Minerals, 8(7): 302. doi: 10.3390/min8070302
    Lisitzin A P, Lukashin V N, Gordeev V V, et al. 1997. Hydrological and geochemical anomalies associated with hydrothermal activity in SW Pacific marginal and back-arc basins. Marine Geology, 142(1–4): 7–45
    Malahoff A, Falloon T. 1991. Preliminary report of the RV Akademik Mstislav Keldysh/ MIR cruise 1990, Lau Basin Leg (May 7−21), on behalf of the Keldysh/ Mir Science Team. http://pacific-data.sprep.org/dataset/preliminary -report-akademik-mstislav-keldyshmir-cruise-1990-lau-basin-leg-may-7-21-1[2022-5-1]
    Maslennikov V V, Cherkashov G, Artemyev D A, et al. 2020. Pyrite varieties at Pobeda hydrothermal fields, Mid-Atlantic ridge 17°07′–17°08′N: LA-ICP-MS data deciphering. Minerals, 10(7): 622. doi: 10.3390/min10070622
    Maslennikov V V, Maslennikova S P, Large R R, et al. 2017. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geology Reviews, 85: 64–106. doi: 10.1016/j.oregeorev.2016.09.012
    Meng Xingwei, Li Xiaohu, Chu Fengyou, et al. 2020. Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1–2°S). Ore Geology Reviews, 116: 103209. doi: 10.1016/j.oregeorev.2019.103209
    Mills R A, Elderfield H. 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26°N mid-Atlantic ridge. Geochimica et Cosmochimica Acta, 59(17): 3511–3524. doi: 10.1016/0016-7037(95)00224-N
    Mottl M J, Seewald J S, Wheat C G, et al. 2011. Chemistry of hot springs along the Eastern Lau Spreading Center. Geochimica et Cosmochimica Acta, 75(4): 1013–1038. doi: 10.1016/j.gca.2010.12.008
    Münch U, Blum N, Halbach P. 1999. Mineralogical and geochemical features of sulfide chimneys from the MESO zone, Central Indian Ridge. Chemical Geology, 155(1–2): 29–44
    Münch U, Lalou C, Halbach P, et al. 2001. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E—mineralogy, chemistry and chronology of sulfide samples. Chemical Geology, 177(3–4): 341–349
    Paropkari A L, Ray D, Balaram V, et al. 2010. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: the geochemical perspectives. Journal of Asian Earth Sciences, 38(3–4): 121–130
    Parson L M, Pearce J A, Murton B J, et al. 1990. Role of ridge jumps and ridge propagation in the tectonic evolution of the Lau back-arc basin, Southwest Pacific. Geology, 18(5): 470–473. doi: 10.1130/0091-7613(1990)018<0470:RORJAR>2.3.CO;2
    Pearce J A, Ernewein M, Bloomer S H, et al. 1994. Geochemistry of Lau Basin volcanic rocks: influence of ridge segmentation and arc proximity. Geological Society, London, Special Publications, 81(1): 53–75
    Perrin A, Goes S, Prytulak J, et al. 2018. Mantle wedge temperatures and their potential relation to volcanic arc location. Earth and Planetary Science Letters, 501: 67–77. doi: 10.1016/j.jpgl.2018.08.011
    Ray D, Banerjee R, Balakrishnan S, et al. 2017. S- and Sr-isotopic compositions in barite–silica chimney from the Franklin Seamount, Woodlark Basin, Papua New Guinea: constraints on genesis and temporal variability of hydrothermal fluid. International Journal of Earth Sciences, 106(5): 1723–1733. doi: 10.1007/s00531-016-1381-5
    Ray D, Banerjee R, Mazumder A, et al. 2018. Mineralogical and geochemical variation in hydrothermal sulfides from Vienna Woods field, Manus Basin, Papua New Guinea: constraints on their evolution. Acta Oceanologica Sinica, 37(4): 22–33. doi: 10.1007/s13131-018-1194-4
    Ray D, Kota D, Das P, et al. 2014. Microtexture and distribution of minerals in hydrothermal barite-silica chimney from the Franklin Seamount, SW Pacific: Constraints on mode of formation. Acta Geologica Sinica-English Edition, 88(1): 213–225. doi: 10.1111/1755-6724.12192
    Scott S D. 1983. Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineralogical Magazine, 47(345): 427–435. doi: 10.1180/minmag.1983.047.345.03
    Stoffers P, Worthington T J, Schwarz-Schampera U, et al. 2006. Submarine volcanoes and high-temperature hydrothermal venting on the Tonga arc, Southwest Pacific. Geology, 34(6): 453–456. doi: 10.1130/G22227.1
    Sun Zhilei, Zhou Huaiyang, Yang Qunhui, et al. 2012. Growth model of a hydrothermal low-temperature Si-rich chimney: Example from the CDE hydrothermal field, Lau Basin. Science China Earth Sciences, 55(10): 1716–1730. doi: 10.1007/s11430-012-4485-1
    Suzuki R, Ishibashi J I, Nakaseama M, et al. 2008. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin. Resource Geology, 58(3): 267–288. doi: 10.1111/j.1751-3928.2008.00061.x
    Tivey M K. 1995. The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modeling transport and reaction. Geochimica et Cosmochimica Acta, 59(10): 1933–1949. doi: 10.1016/0016-7037(95)00118-2
    Wang Shujie, Li Huaiming, Zhai Shikui, et al. 2017a. Geochemical features of sulfides from the deyin-1 hydrothermal field at the southern Mid-Atlantic ridge near 15°S. Journal of Ocean University of China, 16(6): 1043–1054. doi: 10.1007/s11802-017-3316-6
    Wang Shujie, Li Huaiming, Zhai Shikui, et al. 2017b. Mineralogical characteristics of polymetallic sulfides from the Deyin-1 hydrothermal field near 15°S, southern Mid-Atlantic Ridge. Acta Oceanologica Sinica, 36(2): 22–34. doi: 10.1007/s13131-016-0961-3
    Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. 2015. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study. Geochimica et Cosmochimica Acta, 159: 16–41. doi: 10.1016/j.gca.2015.03.020
    Zellmer K E, Taylor B. 2001. A three-plate kinematic model for Lau basin opening. Geochemistry, Geophysics, Geosystems, 2(5): 2000GC000106
    Zeng Zhigang, Ma Yao, Yin Xuebo, et al. 2015. Factors affecting the rare earth element compositions in massive sulfides from deep-sea hydrothermal systems. Geochemistry, Geophysics, Geosystems, 16(8): 2679–2693
    Zhang Xia, Zhai Shikui, Yu Zenghui, et al. 2018. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough. Journal of Marine Systems, 180: 124–131. doi: 10.1016/j.jmarsys.2016.11.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (411) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return