Citation: | Yuchi Cui, Lei Shao, Wu Tang, Peijun Qiao, Goh Thian Lai, Yongjian Yao. Late Eocene–early Miocene provenance evolution of the Crocker Fan in the southern South China Sea[J]. Acta Oceanologica Sinica, 2023, 42(3): 215-226. doi: 10.1007/s13131-023-2148-z |
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1/2): 59–7
|
Bakar Z A A, Madon M, Muhamad A J. 2007. Deep-marine sedimentary facies in the Belaga Formation (Cretaceous–Eocene), Sarawak: observations from new outcrops in the Sibu and Tatau areas. Bulletin of the Geological Society of Malaysia, 53: 35–45. doi: 10.7186/bgsm53200707
|
Breitfeld H T, Hall R, Galin T, et al. 2017. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo. Tectonophysics, 694: 35–56. doi: 10.1016/j.tecto.2016.11.034
|
Chen Shuhui, Qiao Peijun, Zhang Houhe, et al. 2018. Geochemical characteristics of Oligocene–Miocene sediments from the deepwater area of the northern South China Sea and their provenance implications. Acta Oceanologica Sinica, 37(2): 35–43. doi: 10.1007/s13131-017-1127-7
|
Compston W, Williams I S, Kirschvink J L, et al. 1992. Zircon U-Pb ages for the early Cambrian time-scale. Journal of the Geological Society, 149(2): 171–184. doi: 10.1144/gsjgs.149.2.0171
|
Cui Yuchi, Shao Lei, Li Zengxiang, et al. 2021a. A Mesozoic Andean-type active continental margin along coastal South China: new geological records from the basement of the northern South China Sea. Gondwana Research, 99: 36–52. doi: 10.1016/j.gr.2021.06.021
|
Cui Yuchi, Shao Lei, Yu Mengming, et al. 2021b. Formation of Hengchun Accretionary prism turbidites and implications for deep-water transport processes in the northern South China Sea. Acta Geologica Sinica, 95(1): 55–65. doi: 10.1111/1755-6724.14640
|
Cui Yuchi, Zhao Zhigang, Shao Lei, et al. 2022. Provenance characteristics and petroleum geological significance of Crocker fan in southern South China Sea. Acta Petrolei Sinica (in Chinese), 43(10): 1427–1438,1473
|
Galin T, Breitfeld H T, Hall R, et al. 2017. Provenance of the Cretaceous–Eocene Rajang group submarine fan, Sarawak, Malaysia from light and heavy mineral assemblages and U-Pb zircon geochronology. Gondwana Research, 51: 209–233. doi: 10.1016/j.gr.2017.07.016
|
Haile N S. 1974. Borneo. In: Spencer A M, ed. Mesozoic–Cenozoic Orogenic Belts. Vol. 4. London: Geological Society of London Special Publication, 333–347
|
Hall R, Breitfeld H T. 2017. Nature and demise of the Proto-South China Sea. Bulletin of the Geological Society of Malaysia, 63: 61–76. doi: 10.7186/bgsm63201703
|
Hamilton W. 1973. Tectonics of the Indonesian region. Bulletin of the Geological Society of Malaysia, 6: 3–10. doi: 10.7186/bgsm06197301
|
Hayashi K I, Fujisawa H, Holland H D, et al. 1997. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115–4137. doi: 10.1016/S0016-7037(97)00214-7
|
Hennig J, Breitfeld H T, Hall R, et al. 2017. The Mesozoic tectono-magmatic evolution at the Paleo-Pacific subduction zone in West Borneo. Gondwana Research, 48: 292–310. doi: 10.1016/j.gr.2017.05.001
|
Hennig-Breitfeld J, Breitfeld H T, Hall R, et al. 2019. A new upper Paleogene to Neogene stratigraphy for Sarawak and Labuan in northwestern Borneo: Paleogeography of the eastern Sundaland margin. Earth-Science Reviews, 190: 1–32. doi: 10.1016/j.earscirev.2018.12.006
|
Hinz K, Fritsch J, Kempter E H K, et al. 1989. Thrust tectonics along the north-western continental margin of Sabah/Borneo. Geologische Rundschau, 78(3): 705–730. doi: 10.1007/BF01829317
|
Hutchison C S. 1996. The ‘Rajang Accretionary Prism’ and ‘Lupar Line’ problem of Borneo. In: Hall R, Blundell D J, eds. Tectonic Evolution of SE Asia. Vol. 106. London: Geological Society, 247–261
|
Hutchison C S. 2005. Geology of North-West Borneo. Amsterdam: Elsevier
|
Lambiase J J, Tzong T Y, William A G, et al. 2008. The West Crocker formation of northwest Borneo: A Paleogene accretionary prism. ln: Draut A E, Clift P D, Scholl D W, eds, Formation and Applications of the Sedimentary Record in Arc Collision Zones: Geological Society of America Special paper 436., Boulder, Co, USA: Geological Society of America, 171–184. doi: 10.1130/2008.2436
|
Li Lini, Zhao Zhigang, Cui Yuchi, et al. 2022. “Source-to-sink” analysis of turbidite deposits in the upper Cretaceous-Eocene Rajang Group in southern South China Sea. Journal of Palaeogeography (in Chinese), 24(1): 61–72
|
Liechti P, Roe F W, Haile N S. 1960. The Geology of Sarawak, Brunei and the Western Part of North Borneo. Vol. 3. Washington, DC, USA: US Government Printing Office
|
Meng Xianbo, Shao Lei, Cui Yuchi, et al. 2021. Sedimentary Records from Hengchun accretionary prism turbidites on Taiwan Island: Implication on late Neogene migration rate of the Luzon subduction system. Marine and Petroleum Geology, 124: 104820. doi: 10.1016/j.marpetgeo.2020.104820
|
Mi Lijun, Zhang Zhongtao, Pang Xiong, et al. 2018. Main controlling factors of hydrocarbon accumulation in Baiyun Sag at northern continental margin of South China Sea. Petroleum Exploration and Development (in Chinese), 45(5): 902–913
|
Sevastjanova I, Clements B, Hall R, et al. 2011. Granitic magmatism, basement ages, and provenance indicators in the Malay Peninsula: Insights from detrital zircon U-Pb and Hf-isotope data. Gondwana Research, 19(4): 1024–1039. doi: 10.1016/j.gr.2010.10.010
|
Shao Lei, Cui Yuchi, Qiao Peijun, et al. 2019a. Implications on the Early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution. Journal of Palaeogeography (in Chinese), 21(2): 216–231
|
Shao Lei, Cui Yuchi, Stattegger K, et al. 2019b. Drainage control of Eocene to Miocene sedimentary records in the southeastern margin of Eurasian Plate. GSA Bulletin, 131(3/4): 461–478
|
Shao Lei, Qiao Peijun, Cui Yuchi, et al. 2020. The evolutions of the fluvial systems in the northern South China Sea since the early Cenozoic. Science & Technology Review (in Chinese), 38(18): 57–61
|
Tang Wu, Zhao Zhigang, Song Shuang, et al. 2021. Differences in the tectonic evolution of basins in the central-southern South China Sea and their hydrocarbon accumulation conditions. Acta Geologica Sinica, 95(1): 30–40. doi: 10.1111/1755-6724.14638
|
Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications
|
Tian Zhiwen, Tang Wu, Wang Pujun, et al. 2021. Tectonic evolution and key geological issues of the Proto-South China Sea. Acta Geologica Sinica, 95(1): 77–90. doi: 10.1111/1755-6724.14644
|
Tongkul F. 1991. Tectonic evolution of Sabah, Malaysia. Journal of Southeast Asian Earth Sciences, 6(3): 395–405
|
van Hattum M W A, Hall R, Pickard A L, et al. 2006. Southeast Asian sediments not from Asia: Provenance and geochronology of North Borneo sandstones. Geology, 34(7): 589–592. doi: 10.1130/G21939.1
|
van Hattum M W A, Hall R, Pickard A L, et al. 2013. Provenance and geochronology of Cenozoic sandstones of northern Borneo. Journal of Asian Earth Sciences, 76: 266–282. doi: 10.1016/j.jseaes.2013.02.033
|
Wang P C, Li S Z, Guo L L, et al. 2016. Mesozoic and Cenozoic accretionary orogenic processes in Borneo and their mechanisms. Geological Journal, 51(S1): 464–489
|
Wilson R A M, Wong N P Y. 1964. The geology and mineral resources of the Labuan and Padas Valley area, Sabah, Malaysia. Kuching: Government Printing Office
|
Yao Yongjian, Wu Nengyou, Xia Bin, et al. 2008. Petroleum geology of the Zengmu Basin in the southern South China Sea. Geology in China (in Chinese), 35(3): 503–513
|
Yao Yongjian, Xia Bin, Xu Xing. 2005. Tectonic evolution of the main sedimentary basins in southern area of the South China Sea. Gresearch of Eological South China Sea (in Chinese), (1): 1–11
|
Zhang Gongcheng. 2010. Tectonic evolution of deepwater area of northern continental margin in South China Sea. Acta Petrolei Sinica (in Chinese), 31(4): 528–533, 541
|
Zhang Hao, Cui Yuchi, Qiao Peijun, et al. 2021b. Evolution of the Pearl River and its Implication for East Asian Continental Landscape Reversion. Acta Geologica Sinica, 95(1): 66–76. doi: 10.1111/1755-6724.14641
|
Zhang Gongcheng, Feng Congjun, Yao Xingzong, et al. 2021a. Petroleum geology in deepwater settings in a passive continental margin of a marginal Sea: a case study from the South China Sea. Acta Geologica Sinica, 95(1): 1–20. doi: 10.1111/1755-6724.14621
|
Zhang Houhe, Liu Peng, Liao zongbao, et al. 2018. Geological characteristics and hydrocarbon distribution in major sedimentary basins in Nansha sea areas. China Petroleum Exploration (in Chinese), 23(1): 62–70
|
Zhang Gongcheng, Mi Lijun, Qu Hongjun, et al. 2013. Petroleum geology of deep-water areas in offshore China. Acta Petrolei Sinica (in Chinese), 34(S2): 1–14
|
Zhang Gongcheng, Mi Lijun, Wu Shiguo, et al. 2007. Deepwater area—the new prospecting targets of northern continental margin of South China Sea. Acta Petrolei Sinica (in Chinese), 28(2): 15–21
|
Zhang Gongcheng, Qu Hongjun, Liu Shixiang, et al. 2015a. Tectonic cycle of marginal sea controlled the hydrocarbon accumulation in deep-water areas of South China Sea. Acta Petrolei Sinica (in Chinese), 36(5): 533–545
|
Zhang Hao, Shao Lei, Zhang Gongcheng, et al. 2020. The response of Cenozoic sedimentary evolution coupled with the formation of the South China Sea. Geological Journal, 55(10): 6989–7010. doi: 10.1002/gj.3856
|
Zhang Gongcheng, Wang Pujun, Wu Jingfu, et al. 2015b. Tectonic cycle of marginal oceanic basin: A new evolution model of the South China Sea. Earth Science Frontiers (in Chinese), 22(3): 27–37
|
Zhang Gongcheng, Zhu Weilin, Mi Lijun, et al. 2010. The theory of hydrocarbon genernation controlled by source rock and heat from circle distribution of outside-oil fields and inside-gas fields in South China Sea. Acta Sedimentologica Sinica (in Chinese), 28(5): 987–1005
|
Zhao Suai, Li Xuejie, Yao Yongjian, et al. 2019. Orogenic events in southern South China Sea and their relationship with the subduction of the Proto South China Sea. Marine Geology & Quaternary Geology, 39(5): 147–162
|
Zhao Zhigang, Zhang Hao, Cui Yuchi, et al. 2021. Cenozoic sea-land transition and its petroleum geological significance in the northern South China Sea. Acta Geologica Sinica, 95(1): 41–54. doi: 10.1111/1755-6724.14628
|
Zhu Weilin, Cui Yuchi, Shao Lei, et al. 2021. Reinterpretation of the northern South China Sea pre-Cenozoic basement and geodynamic implications of the South China continent: constraints from combined geological and geophysical records. Acta Oceanologica Sinica, 40(2): 12–28
|