Citation: | Xiaolun Chen, Xiaowen Luo, Ziyin Wu, Xiaoming Qin, Jihong Shang, Huajun Xu, Bin Li, Mingwei Wang, Hongyang Wan. A VGGNet-based correction for satellite altimetry-derived gravity anomalies to improve the accuracy of bathymetry to depths of 6 500 m[J]. Acta Oceanologica Sinica, 2024, 43(1): 112-122. doi: 10.1007/s13131-023-2203-9 |
Airy G B. 1855. III. On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philosophical Transactions of the Royal Society of London, 145: 101–104, doi: 10.1098/rstl.1855.0003
|
An Dechao, Guo Jinyun, Li Zhen, et al. 2022. Improved gravity-geologic method reliably removing the long-wavelength gravity effect of regional seafloor topography: a case of bathymetric prediction in the South China Sea. IEEE Transactions on Geoscience and Remote Sensing, 60: 4211912, doi: 10.1109/TGRS.2022.3223047
|
Annan R F, Wan Xiaoyun. 2022. Recovering bathymetry of the gulf of guinea using altimetry-derived gravity field products combined via convolutional neural network. Surveys in Geophysics, 43(5): 1541–1561, doi: 10.1007/s10712-022-09720-5
|
Benedetti P, Ienco D, Gaetano R, et al. 2018. M3Fusion: a deep learning architecture for multiscale multimodal multitemporal satellite data fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12): 4939–4949, doi: 10.1109/JSTARS.2018.2876357
|
Bonvalot S, Balmino G, Briais A, et al. 2012. World gravity map. commission for the geological map of the world. Paris, France: BGI–CGMW-CNES-IRD
|
Braitenberg C, Wienecke S, Wang Yong. 2006. Basement structures from satellite-derived gravity field: South China Sea ridge. Journal of Geophysical Research: Solid Earth, 111(B5): B05407, doi: 10.1029/2005JB003938
|
Chen Xiaolun, Luo Xiaowen, Wu Ziyin, et al. 2022. A VGGNet-based method for refined bathymetry from satellite altimetry to reduce errors. Remote Sensing, 14(23): 5939, doi: 10.3390/rs14235939
|
Colbo K, Ross T, Brown C, et al. 2014. A review of oceanographic applications of water column data from multibeam echosounders. Estuarine, Coastal and Shelf Science, 145: 41–56,
|
Coley K. 2022. A global ocean map is not an ambition, but a necessity to support the ocean decade. Marine Technology Society Journal, 56(3): 9–12, doi: 10.4031/MTSJ.56.3.3
|
Fan Diao, Li Shanshan, Li Xinxing, et al. 2021. Seafloor topography estimation from gravity anomaly and vertical gravity gradient using nonlinear iterative least square method. Remote Sensing, 13(1): 64, doi: 10.3390/rs13010064
|
Fan Diao, Li Shanshan, Meng Shuyu, et al. 2020. Applying iterative method to solving high-order terms of seafloor topography. Marine Geodesy, 43(1): 63–85, doi: 10.1080/01490419.2019.1670298
|
Gatys L A, Ecker A S, Bethge M. 2016. A neural algorithm of artistic style. Journal of Vision, 16(12): 326, doi: 10.1167/16.12.326
|
Gatys L A, Ecker A S, Bethge M, et al. 2017. Controlling perceptual factors in neural style transfer. In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 3730–3738, doi: 10.1109/CVPR.2017.397
|
Gong Zheng, Zhang Peizhen, Zheng Wenjun, et al. 2021. The effect of altimetry data in estimating the elastic thickness of the lithosphere in the western Pacific Ocean. Geodesy and Geodynamics, 12(5): 315–322, doi: 10.1016/j.geog.2021.07.001
|
Hu Minzhang, Zhang Shengjun, Jin Taoyong, et al. 2020. A new generation of global bathymetry model BAT_WHU2020. Acta Geodaetica et Cartographica Sinica (in Chinese), 49(8): 939–954, doi: 10.11947/j.AGCS.2020.20190526
|
Hughes Clarke J E. 2018. Multibeam echosounders. In: Micallef A, Krastel S, Savini A, eds. Submarine Geomorphology. Cham: Springer, 25–41,
|
Huo Guanying, Wu Ziyin, Li Jiabiao. 2020. Underwater object classification in sidescan sonar images using deep transfer learning and semisynthetic training data. IEEE Access, 8: 47407–47418, doi: 10.1109/ACCESS.2020.2978880
|
Ibrahim A, Hinze W J. 1972. Mapping buried bedrock topography with gravity. Groundwater, 10(3): 18–23, doi: 10.1111/j.1745-6584.1972.tb02921.x
|
Islam M J, Xia Youya, Sattar J. 2020. Fast underwater image enhancement for improved visual perception. IEEE Robotics and Automation Letters, 5(2): 3227–3234, doi: 10.1109/LRA.2020.2974710
|
Jena B, Kurian P J, Swain D, et al. 2012. Prediction of bathymetry from satellite altimeter based gravity in the Arabian Sea: mapping of two unnamed deep seamounts. International Journal of Applied Earth Observation and Geoinformation, 16: 1–4, doi: 10.1016/j.jag.2011.11.008
|
Jia Yangqing, Shelhamer E, Donahue J, et al. 2014. Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, USA: Association for Computing Machinery, 675–678,
|
Koh Z W, Nimmo F, Lunine J I, et al. 2022. Assessing the detectability of Europa’s seafloor topography from Europa clipper’s gravity data. The Planetary Science Journal, 3(8): 197, doi: 10.3847/PSJ/ac82aa
|
Krizhevsky A, Sutskever I, Hinton G E. 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84–90, doi: 10.1145/3065386
|
Li Jiabiao. 1999. Multibeam Survey Principles, Techniques and Methods (in Chinese). Beijing: China Ocean Press
|
Moran N P. 2020. Machine learning model selection for predicting global bathymetry [dissertation]. New Orleans, USA: University of New Orleans
|
NOAA National Centers for Environmental Information. 2004. Multibeam bathymetry database (MBBDB). NOAA National Centers for Environmental Information. https://www.ncei.noaa.gov/maps/bathymetry/[2022-6-14]
|
NOAA National Centers for Environmental Information. 2015. Marine trackline geophysical database. NOAA National Centers for Environmental Information. https://www.ncei.noaa.gov/maps/geophysics/[2022-06-14]
|
Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39(4): 526–536, doi: 10.1190/1.1440444
|
Otter D W, Medina J R, Kalita J K. 2021. A survey of the usages of deep learning for natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2): 604–624, doi: 10.1109/TNNLS.2020.2979670
|
Ouyang Mingda, Sun Zhongmiao, Zhai Zhenhe. 2014. Predicting bathymetry in South China Sea using the gravity-geologic method. Chinese Journal of Geophysics (in Chinese), 57(9): 2756–2765, doi: 10.6038/cjg20140903
|
Ouyang Mingda, Sun Zhongmiao, Zhai Zhenhe, et al. 2015. Bathymetry prediction based on the admittance theory of gravity anomalies. Acta Geodaetica et Cartographica Sinica (in Chinese), 44(10): 1092–1099, doi: 10.11947/j.AGCS.2015.20140427
|
Parker R L. 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31(4): 447–455, doi: 10.1111/j.1365-246X.1973.tb06513.x
|
Reddi S J, Kale S, Kumar S. 2018. On the convergence of Adam and beyond. In: Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada: OpenReview. net
|
Sandwell D T, Goff J A, Gevorgian J, et al. 2022. Improved bathymetric prediction using geological information: SYNBATH. Earth and Space Science, 9(2): e2021EA002069, doi: 10.1029/2021EA002069
|
Scharroo R, Visser P. 1998. Precise orbit determination and gravity field improvement for the ERS satellites. Journal of Geophysical Research: Oceans, 103(C4): 8113–8127, doi: 10.1029/97JC03179
|
Schulz M A, Yeo B T T, Vogelstein J T, et al. 2020. Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets. Nature Communications, 11(1): 4238, doi: 10.1038/s41467-020-18037-z
|
Seoane L, Ramillien G, Beirens B, et al. 2022. Regional seafloor topography by extended Kalman filtering of marine gravity data without ship-track information. Remote Sensing, 14(1): 169, doi: 10.3390/rs14010169
|
Shi Bo, Lu Xiushan, Yang Fanlin, et al. 2017. Shipborne over- and under-water integrated mobile mapping system and its seamless integration of point clouds. Marine Geodesy, 40(2/3): 104–122,
|
Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: Association for Computing Machinery
|
Smith W H F, Sandwell D T. 1994. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry. Journal of Geophysical Research: Solid Earth, 99(B11): 21803–21824, doi: 10.1029/94JB00988
|
Smith W H F, Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334): 1956–1962, doi: 10.1126/science.277.5334.1956
|
Walcott R I. 1970. Flexural rigidity, thickness, and viscosity of the lithosphere. Journal of Geophysical Research, 75(20): 3941–3954, doi: 10.1029/JB075i020p03941
|
Watts A B. 1978. An analysis of isostasy in the world’s oceans 1. Hawaiian-Emperor Seamount Chain. Journal of Geophysical Research: Solid Earth, 83(B12): 5989–6004, doi: 10.1029/JB083iB12p05989
|
Watts A B. 2001. Isostasy and Flexure of the Lithosphere. Cambridge, UK: Cambridge University Press
|
Watts A B, Sandwell D T, Smith W H F, et al. 2006. Global gravity, bathymetry, and the distribution of submarine volcanism through space and time. Journal of Geophysical Research: Solid Earth, 111(B8): B08408, doi: 10.1029/2005JB004083
|
Wei Zhijie, Guo Jinyun, Zhu Chengcheng, et al. 2021. Evaluating accuracy of HY-2A/GM-derived gravity data with the gravity-geologic method to predict bathymetry. Frontiers in Earth Science, 9: 636246, doi: 10.3389/feart.2021.636246
|
Wu Meiyin, Chen Li. 2015. Image recognition based on deep learning. In: Proceedings of 2015 Chinese Automation Congress (CAC). Wuhan, China: IEEE, 542–546, doi: 10.1109/CAC.2015.7382560
|
Wu Ziyin, Yang Fanlin, Tang Yong, et al. 2020. High-Resolution Seafloor Survey and Applications. Beijing: Science Press
|
Yale M M, Sandwell D T, Herring A T. 1998. What are the limitations of satellite altimetry?. The Leading Edge, 17(1): 73–76, doi: 10.1190/1.1437832
|
Yuan Qiangqiang, Shen Huanfeng, Li Tongwen, et al. 2020. Deep learning in environmental remote sensing: achievements and challenges. Remote Sensing of Environment, 241: 111716, doi: 10.1016/j.rse.2020.111716
|
Zhao Jianhu, Ouyang Yongzhong, Wang Aixue. 2017. Status and development tendency for seafloor terrain measurement technology. Acta Geodaetica et Cartographica Sinica (in Chinese), 46(10): 1786–1794, doi: 10.11947/j.AGCS.2017.20170276
|
Zhu Chengcheng, Guo Jinyun, Yuan Jiajia, et al. 2021. Refining altimeter-derived gravity anomaly model from shipborne gravity by multi-layer perceptron neural network: a case in the South China Sea. Remote Sensing, 13(4): 607, doi: 10.3390/rs13040607
|
Zwally H J, Schutz B, Abdalati W, et al. 2002. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. Journal of Geodynamics, 34(3/4): 405–445,
|