Citation: | Weizhen Jiang, Guizhi Wang, Qing Li, Manab Kumar Dutta, Shilei Jin, Guiyuan Dai, Yi Xu. The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone[J]. Acta Oceanologica Sinica, 2023, 42(8): 61-76. doi: 10.1007/s13131-023-2234-2 |
Adame M F, Kauffman J B, Medina I, et al. 2013. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS ONE, 8(2): e56569. doi: 10.1371/journal.pone.0056569
|
Alongi D M. 2012. Carbon sequestration in mangrove forests. Carbon Management, 3(3): 313–322. doi: 10.4155/cmt.12.20
|
Alongi D M. 2014. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6: 195–219. doi: 10.1146/annurev-marine-010213-135020
|
Alongi D M. 2020. Carbon balance in salt marsh and mangrove ecosystems: a global synthesis. Journal of Marine Science and Engineering, 8(10): 767. doi: 10.3390/jmse8100767
|
Alongi D M, Tirendi F, Dixon P, et al. 1999. Mineralization of organic matter in intertidal sediments of a tropical semi-enclosed delta. Estuarine, Coastal and Shelf Science, 48(4): 451–467,
|
Alongi D M, Trott L A, Rachmansyah, et al. 2008. Growth and development of mangrove forests overlying smothered coral reefs, Sulawesi and Sumatra, Indonesia. Marine Ecology Progress Series, 370: 97–109. doi: 10.3354/meps07661
|
Alongi D M, Wattayakorn G, Pfitzner J, et al. 2001. Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand. Marine Geology, 179(1–2): 85–103,
|
Arias-Ortiz A, Masqué P, Glass L, et al. 2021. Losses of soil organic carbon with deforestation in mangroves of Madagascar. Ecosystems, 24(1): 1–19. doi: 10.1007/S10021-020-00500-Z
|
Atwood T B, Connolly R M, Almahasheer H, et al. 2017. Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7): 523–528. doi: 10.1038/NCLIMATE3326
|
Bianchi T S, Allison M A, Zhao Jun, et al. 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science, 119: 7–16,
|
Biswas H, Mukhopadhyay S K, De T K, et al. 2004. Biogenic controls on the air-water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of Bay of Bengal, India. Limnology and Oceanography, 49(1): 95–101. doi: 10.4319/lo.2004.49.1.0095
|
Borges V A, Djenidi S, Lacroix G, et al. 2003. Atmospheric CO2 flux from mangrove surrounding waters. Geophysical Research Letters, 30(11): 1558. doi: 10.1029/2003GL017143
|
Bouillon S, Borges A V, Castañeda-Moya E, et al. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles, 22(2): GB2013. doi: 10.1029/2007GB003052
|
Bouillon S, Frankignoulle M, Dehairs F, et al. 2003. Inorganic and organic carbon biogeochemistry in the Gautami Godavari Estuary (Andhra Pradesh, India) during pre-monsoon: the local impact of extensive mangrove forests. Global Biogeochemical Cycles, 17(4): 1114. doi: 10.1029/2002GB002026
|
Brunskill G J, Zagorskis I, Pfitzner J. 2002. Carbon burial rates in sediments and a carbon mass balance for the Herbert River region of the great barrier reef continental shelf, North Queensland, Australia. Estuarine, Coastal and Shelf Science, 54(4): 677–700,
|
Burnett W C, Dulaiova H. 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity, 69(1–2): 21–35,
|
Burnett W C, Peterson R, Moore W S, et al. 2008. Radon and radium isotopes as tracers of submarine groundwater discharge—Results from the Ubatuba, Brazil SGD assessment intercomparison. Estuarine, Coastal and Shelf Science, 76(3): 501–511,
|
Call M, Maher D T, Santos I R, et al. 2015. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring–neap–spring timescales in a mangrove creek. Geochimica et Cosmochimica Acta, 150: 211–225. doi: 10.1016/j.gca.2014.11.023
|
Call M, Santos I R, Dittmar T, et al. 2019. High pore-water derived CO2 and CH4 emissions from a macro-tidal mangrove creek in the Amazon region. Geochimica et Cosmochimica Acta, 247: 106–120. doi: 10.1016/j.gca.2018.12.029
|
Chen Siming. 2021. Potential distribution of Spartina alterniflora along the Chinese coast and its response to climate change. Journal of Ecology and Rural Environment (in Chinese), 37(12): 1575–1585. doi: 10.19741/j.issn.1673-4831.2021.0509
|
Chen Luzhen, Chen Yining, Zhang Yihui, et al. 2021a. Mangrove carbon sequestration and sediment deposition changes under cordgrass invasion. In: Sidik F, Friess D A, eds. Dynamic Sedimentary Environments of Mangrove Coasts. Amsterdam: Elsevier Press, 473–509
|
Chen Weifang, Liu Qian, Huh C A, et al. 2010a. Signature of the Mekong River plume in the western South China Sea revealed by radium isotopes. Journal of Geophysical Research: Oceans, 115(C12): C12002. doi: 10.1029/2010JC006460
|
Chen Xiaogang, Santos I R, Call M, et al. 2021b. The mangrove CO2 pump: tidally driven pore-water exchange. Limnology and Oceanography, 66(4): 1563–1577. doi: 10.1002/lno.11704
|
Chen Guangchen, Ulumuddin Y I, Pramudji S, et al. 2014. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia. Science of the Total Environment, 487: 91–96. doi: 10.1016/j.scitotenv.2014.03.140
|
Chen Juan, Wu Feihua, Xiao Qiang, et al. 2010b. Diurnal variation of nitric oxide emission flux from a mangrove wetland in Zhangjiang River Estuary, China. Estuarine, Coastal and Shelf Science, 90(4): 212–220,
|
Chen Xiaogang, Zhang Fenfen, Lao Yanling, et al. 2018. Submarine groundwater discharge-derived carbon fluxes in mangroves: an important component of blue carbon budgets?. Journal of Geophysical Research: Oceans, 123(9): 6962–6979. doi: 10.1029/2018JC014448
|
Choi Y, Wang Yang. 2004. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements. Global Biogeochemical Cycles, 18(4): GB4016. doi: 10.1029/2004GB002261
|
Corbett D R, Burnett W C, Cable P H, et al. 1998. A multiple approach to the determination of radon fluxes from sediments. Journal of Radioanalytical and Nuclear Chemistry, 236(1–2): 247–253,
|
Cusack M, Saderne V, Arias-Ortiz A, et al. 2018. Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf. Environmental Research Letters, 13(7): 074007. doi: 10.1088/1748-9326/aac899
|
Donato D C, Kauffman J B, Murdiyarso D, et al. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5): 293–297. doi: 10.1038/NGEO1123
|
Feng Jianxiang, Zhou Jian, Wang Liming, et al. 2017. Effects of short-term invasion of Spartina alterniflora and the subsequent restoration of native mangroves on the soil organic carbon, nitrogen and phosphorus stock. Chemosphere, 184: 774–783. doi: 10.1016/j.chemosphere.2017.06.060
|
Gao Guifeng, Li Pengfei, Shen Zhijun, et al. 2018. Exotic Spartina alterniflora invasion increases CH4 while reduces CO2 emissions from mangrove wetland soils in southeastern China. Scientific Reports, 8(1): 9243. doi: 10.1038/s41598-018-27625-5
|
Gardner L R, Gaines E F. 2008. A method for estimating pore water drainage from marsh soils using rainfall and well records. Estuarine, Coastal and Shelf Science, 79(1): 51–58,
|
Gonneea M E, Paytan A, Herrera-Silveira J A. 2004. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuarine, Coastal and Shelf Science, 61(2): 211–227,
|
Grellier S, Janeau J L, Nhon D H, et al. 2017. Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam). Science of the Total Environment, 593–594: 654–663,
|
Hamilton S E, Friess D A. 2018. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nature Climate Change, 8(3): 240–244. doi: 10.1038/s41558-018-0090-4
|
Hemond H F, Fifield J L. 1982. Subsurface flow in salt marsh peat: a model and field study. Limnology and Oceanography, 27(1): 126–136. doi: 10.4319/lo.1982.27.1.0126
|
Henry K M, Twilley R R. 2013. Soil development in a coastal Louisiana wetland during a climate-induced vegetation shift from salt marsh to mangrove. Journal of Coastal Research, 29(6): 1273–1283. doi: 10.2112/JCOASTRES-D-12-00184.1
|
Jones T G, Ratsimba H R, Ravaoarinorotsihoarana L, et al. 2014. Ecological variability and carbon stock estimates of mangrove ecosystems in northwestern Madagascar. Forests, 5(1): 177–205. doi: 10.3390/f5010177
|
Kauffman J B, Trejo H H, del Carmen Jesus Garcia M, et al. 2016. Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management, 24(2): 203–216. doi: 10.1007/s11273-015-9453-z
|
Kelly J L, Dulai H, Glenn C R, et al. 2019. Integration of aerial infrared thermography and in situ radon-222 to investigate submarine groundwater discharge to Pearl Harbor, Hawaii, USA. Limnology and Oceanography, 64(1): 238–257. doi: 10.1002/lno.11033
|
Koné Y J M, Borges A V. 2008. Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau Province (Vietnam). Estuarine, Coastal and Shelf Science, 77(3): 409–421,
|
Konikow L F, Akhavan M, Langevin C D, et al. 2013. Seawater circulation in sediments driven by interactions between seabed topography and fluid density. Water Resources Research, 49(3): 1386–1399. doi: 10.1002/wrcr.20121
|
Koretsky C M, Meile C, Van Cappellen P. 2002. Quantifying bioirrigation using ecological parameters: a stochastic approach. Geochemical Transactions, 3(1): 17. doi: 10.1186/1467-4866-3-17
|
Krest J M, Moore W S, Rama. 1999. 226Ra and 228Ra in the mixing zones of the Mississippi and Atchafalaya Rivers: indicators of groundwater input. Marine Chemistry, 64(3): 129–152. doi: 10.1016/S0304-4203(98)00070-X
|
Kristensen E, Flindt M R, Ulomi S, et al. 2008. Emission of CO2 and CH4 to the atmosphere by sediments and open waters in two Tanzanian mangrove forests. Marine Ecology Progress Series, 370: 53–67. doi: 10.3354/meps07642
|
Kusumaningtyas M A, Hutahaean A A, Fischer H W, et al. 2019. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, 218: 310–323,
|
Lambert M J, Burnett W C. 2003. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements. Biogeochemistry, 66(1–2): 55–73,
|
Li Dongyi, Xu Yonghang, Li Yunhai, et al. 2018. Sedimentary records of human activity and natural environmental evolution in sensitive ecosystems: a case study of a coral nature reserve in Dongshan Bay and a mangrove forest nature reserve in Zhangjiang River Estuary, Southeast China. Organic Geochemistry, 121: 22–35. doi: 10.1016/j.orggeochem.2018.02.011
|
Lin Qiulian. 2019. The influence of aerial root/belowground root structure on the vertical accretion and elevation change of mangroves (in Chinese)[dissertation]. Xiamen: Xiamen University
|
Liu Mingyue, Li Huiying, Li Lin, et al. 2017. Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary, China. Remote Sensing, 9(6): 539. doi: 10.3390/rs9060539
|
Lynch J C, Meriwether J R, McKee B A, et al. 1989. Recent accretion in mangrove ecosystems based on 137Cs and 210Pb. Estuaries, 12(4): 284–299. doi: 10.2307/1351907
|
MacIntyre S, Wanninkhof R H, Chanton J P. 1995. Trace gas exchange across the air-water interface in freshwater and coastal marine environments. In: Mattson P A, Harris R C, eds. Methods in Ecology-Biogenic Trace Gases: Measuring Emissions from Soil and Water. New York: Blackwell Science, 52–77
|
MacKenzie R, Sharma S, Rovai A R. 2021. Environmental drivers of blue carbon burial and soil carbon stocks in mangrove forests. In: Sidik F, Friess D A, eds. Dynamic Sedimentary Environments of Mangrove Coasts. Amsterdam: Elsevier Press, 275–294
|
Maher D T, Call M, Santos I R, et al. 2018. Beyond burial: lateral exchange is a significant atmospheric carbon sink in mangrove forests. Biology Letters, 14(7): 20180200. doi: 10.1098/rsbl.2018.0200
|
Maher D T, Santos I R, Golsby-Smith L, et al. 2013. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink?. Limnology and Oceanography, 58(2): 475–488. doi: 10.4319/lo.2013.58.2.0475
|
Maher D T, Santos I R, Schulz K G, et al. 2017. Blue carbon oxidation revealed by radiogenic and stable isotopes in a mangrove system. Geophysical Research Letters, 44(10): 4889–4896. doi: 10.1002/2017GL073753
|
Martens C S, Kipphut G W, Val Klump J. 1980. Sediment-water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements. Science, 208(4441): 285–288. doi: 10.1126/science.208.4441.285
|
Meek B D, Rechel E R, Carter L M, et al. 1992. Infiltration rate of a sandy loam soil: effects of traffic, tillage, and plant roots. Soil Science Society of America Journal, 56(3): 908–913. doi: 10.2136/sssaj1992.03615995005600030038x
|
Millero F J, Hiscock W T, Huang F, et al. 2001. Seasonal variation of the carbonate system in Florida Bay. Bulletin of Marine Science, 68(1): 101–123
|
Monji N, Hamotani K, Hamada Y, et al. 2002. Exchange of CO2 and heat between mangrove forest and the atmosphere in wet and dry seasons in southern Thailand. Journal of Agricultural Meteorology, 58(2): 71–77. doi: 10.2480/agrmet.58.71
|
Moore W S, Arnold R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans, 101(C1): 1321–1329. doi: 10.1029/95JC03139
|
Moore W S, Blanton J O, Joye S B. 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research: Oceans, 111(C9): C09006. doi: 10.1029/2005JC003041
|
Nozaki Y, Kasemsupaya V, Tsubota H. 1989. Mean residence time of the shelf water in the East China and the Yellow Seas determined by 228Ra/226Ra measurements. Geophysical Research Letters, 16(11): 1297–1300. doi: 10.1029/gl016i011p01297
|
Page S E, Siegert F, Rieley J O, et al. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420(6911): 61–65. doi: 10.1038/nature01131
|
Passos T R G, Artur A G, Nóbrega G N, et al. 2016. Comparison of the quantitative determination of soil organic carbon in coastal wetlands containing reduced forms of Fe and S. Geo-Marine Letters, 36(3): 223–233. doi: 10.1007/s00367-016-0437-7
|
Pelletier L, Strachan I B, Roulet N T, et al. 2015. Can boreal peatlands with pools be net sinks for CO2?. Environmental Research Letters, 10(3): 035002. doi: 10.1088/1748-9326/10/3/035002
|
Peng T H, Takahashi T, Broecker W S. 1974. Surface radon measurements in the North Pacific Ocean Station Papa. Journal of Geophysical Research, 79(12): 1772–1780. doi: 10.1029/JC079i012p01772
|
Pilson M E Q. 2013. An Introduction to the Chemistry of the Sea. 2nd ed. Cambridge: Cambridge University, 396–398
|
Prakash R, Srinivasamoorthy K, Gopinath S, et al. 2018. Radon isotope assessment of submarine groundwater discharge (SGD) in Coleroon River Estuary, Tamil Nadu, India. Journal of Radioanalytical and Nuclear Chemistry, 317(1): 25–36. doi: 10.1007/s10967-018-5877-2
|
Pülmanns N, Diele K, Mehlig U, et al. 2014. Burrows of the semi-terrestrial crab Ucides cordatus enhance CO2 release in a north Brazilian mangrove forest. PLoS ONE, 9(10): e109532. doi: 10.1371/journal.pone.0109532
|
Ranjan R K, Routh J, Ramanathan A L, et al. 2011. Elemental and stable isotope records of organic matter input and its fate in the Pichavaram mangrove-estuarine sediments (Tamil Nadu, India). Marine Chemistry, 126(1–4): 163–172,
|
Ray R, Ganguly D, Chowdhury C, et al. 2011. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmospheric Environment, 45(28): 5016–5024. doi: 10.1016/j.atmosenv.2011.04.074
|
Ray R, Michaud E, Aller R C, et al. 2018. The sources and distribution of carbon (DOC, POC, DIC) in a mangrove dominated estuary (French Guiana, South America). Biogeochemistry, 138(3): 297–321. doi: 10.1007/s10533-018-0447-9
|
Reithmaier G M S, Chen Xiaogang, Santos I R, et al. 2021. Rainfall drives rapid shifts in carbon and nutrient source-sink dynamics of an urbanised, mangrove-fringed estuary. Estuarine Coastal and Shelf Science, 249: 107064. doi: 10.1016/j.ecss.2020.107064
|
Ridd P V. 1996. Flow through animal burrows in mangrove creeks. Estuarine, Coastal and Shelf Science, 43(5): 617–625,
|
Robinson C, Li L, Barry D A. 2007. Effect of tidal forcing on a subterranean estuary. Advances in Water Resources, 30(4): 851–865. doi: 10.1016/j.advwatres.2006.07.006
|
Rovai A S, Twilley R R. 2021. Gaps, challenges, and opportunities in mangrove blue carbon research: a biogeographic perspective. In: Sidik F, Friess D A, eds. Dynamic Sedimentary Environments of Mangrove Coasts. Amsterdam: Elsevier Press, 295–334
|
Rovai A S, Twilley R R, Castañeda-Moya E, et al. 2018. Global controls on carbon storage in mangrove soils. Nature Climate Change, 8(6): 534–538. doi: 10.1038/s41558-018-0162-5
|
Sanders C J, Maher D T, Tait D R, et al. 2016. Are global mangrove carbon stocks driven by rainfall?. Journal of Geophysical Research: Biogeosciences, 121(10): 2600–2609. doi: 10.1002/2016JG003510
|
Sanders C J, Santos I R, Barcellos R, et al. 2012. Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: consequence of sea level rise?. Continental Shelf Research, 43: 86–94. doi: 10.1016/j.csr.2012.04.015
|
Sanders C J, Smoak J M, Naidu A S, et al. 2010. Mangrove forest sedimentation and its reference to sea level rise, Cananeia, Brazil. Environmental Earth Sciences, 60(6): 1291–1301. doi: 10.1007/s12665-009-0269-0
|
Santos I R, Chen Xiaogang, Lecher A L, et al. 2021. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2(5): 307–323. doi: 10.1038/s43017-021-00152-0
|
Santos I R, Maher D T, Eyre B D. 2012. Coupling automated radon and carbon dioxide measurements in coastal waters. Environmental Science & Technology, 46(14): 7685–7691. doi: 10.1021/es301961b
|
Santos I R, Maher D T, Larkin R, et al. 2019. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnology and Oceanography, 64(3): 996–1013. doi: 10.1002/lno.11090
|
Seeberg-Elverfeldt J, Schlüter M, Feseker T, et al. 2005. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnology and Oceanography: Methods, 3(8): 361–371. doi: 10.4319/lom.2005.3.361
|
Smith C G, Price R M, Swarzenski P W, et al. 2016. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: shark river slough, Florida Coastal Everglades, USA. Estuaries and Coasts, 39(6): 1600–1616. doi: 10.1007/s12237-016-0079-z
|
Stieglitz T C, Clark J F, Hancock G J. 2013. The mangrove pump: the tidal flushing of animal burrows in a tropical mangrove forest determined from radionuclide budgets. Geochimica et Coshmochimica Acta, 102: 12–22. doi: 10.1016/j.gca.2012.10.033
|
Stieglitz T, Ridd P, Müller P. 2000. Passive irrigation and functional morphology of crustacean burrows in a tropical mangrove swamp. Hydrobiologia, 421(1): 69–76. doi: 10.1023/A:1003925502665
|
Susilo A, Ridd P V, Thomas S. 2005. Comparison between tidally driven groundwater flow and flushing of animal burrows in tropical mangrove swamps. Wetlands Ecology and Management, 13(4): 377–388. doi: 10.1007/s11273-004-0164-0
|
Swarzenski P, Reich C, Rudnick D. 2009. Examining submarine ground-water discharge into Florida bay by using 222Rn and continuous resistivity profiling. U. S. Geological Survey, Open-File Report 2008–1342. https://pubs.usgs.gov/publication/ofr20081342[2009-07-0-23/2022-09-08]
|
Sweeney C, Gloor E, Jacobson A R, et al. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles, 21(2): GB2015. doi: 10.1029/2006GB002784
|
Taillardat P, Willemsen P, Marchand C, et al. 2018. Assessing the contribution of porewater discharge in carbon export and CO2 evasion in a mangrove tidal creek (Can Gio, Vietnam). Journal of Hydrology, 563: 303–318. doi: 10.1016/j.jhydrol.2018.05.042
|
Tait D R, Maher D T, Macklin P A, et al. 2016. Mangrove pore water exchange across a latitudinal gradient. Geophysical Research Letters, 43(7): 3334–3341. doi: 10.1002/2016GL068289
|
Tait D R, Maher D T, Sanders C J, et al. 2017. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves. Geochimica et Cosmochimica Acta, 200: 295–309. doi: 10.1016/j.gca.2016.12.024
|
Tateda Y, Nhan D D, Wattayakorn G, et al. 2005. Preliminary evaluation of organic carbon sedimentation rates in Asian mangrove coastal ecosystems estimated by 210Pb chronology. Radioprotection, 40(S1): S527–S532. doi: 10.1051/radiopro:2005s1-077
|
Thompson B S, Clubbe C P, Primavera J H, et al. 2014. Locally assessing the economic viability of blue carbon: a case study from Panay Island, the Philippines. Ecosystem Services, 8: 128–140. doi: 10.1016/j.ecoser.2014.03.004
|
Wang Mao, Gao Xueqin, Wang Wenqing. 2014. Differences in burrow morphology of crabs between Spartina alterniflora marsh and mangrove habitats. Ecological Engineering, 69: 213–219. doi: 10.1016/j.ecoleng.2014.03.096
|
Wang Fenfang, Xiao Kai, Santos I R, et al. 2022. Porewater exchange drives nutrient cycling and export in a mangrove-salt marsh ecotone. Journal of Hydrology, 606: 127401. doi: 10.1016/j.jhydrol.2021.127401
|
Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research: Oceans, 97(C5): 7373–7382. doi: 10.1029/92JC00188
|
Weiss R F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3): 203–215. doi: 10.1016/0304-4203(74)90015-2
|
Whelan K R T, Smith T J, Cahoon D R, et al. 2005. Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth. Estuaries, 28(6): 833–843. doi: 10.1007/BF02696013
|
Wilson A M, Gardner L R. 2006. Tidally driven groundwater flow and solute exchange in a marsh: numerical simulations. Water Resources Research, 42(1): W01405. doi: 10.1029/2005WR004302
|
Worthington T A, Zu Ermgassen P S E, Friess D A, et al. 2020. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Scientific Reports, 10(1): 14652. doi: 10.1038/s41598-020-71194-5
|
Xin Pei, Jin Guangqiu, Li Ling, et al. 2009. Effects of crab burrows on pore water flows in salt marshes. Advances in Water Resources, 32(3): 439–449. doi: 10.1016/j.advwatres.2008.12.008
|
Xin Pei, Li Ling, Barry D A. 2013. Tidal influence on soil conditions in an intertidal creek-marsh system. Water Resources Research, 49(1): 137–150. doi: 10.1029/2012WR012290
|
Yando E S, Osland M J, Willis J M, et al. 2016. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools. Journal of Ecology, 104(4): 1020–1031. doi: 10.1111/1365-2745.12571
|
Yau Y Y Y, Xin Pei, Chen Xiaogang, et al. 2022. Alkalinity export to the ocean is a major carbon sequestration mechanism in a macrotidal saltmarsh. Limnology and Oceanography, 67(S2): S158–S170. doi: 10.1002/lno.12155
|
Zhang Yan, Li Hailong, Wang Xuejing, et al. 2016. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn. Journal of Hydrology, 533: 103–113. doi: 10.1016/j.jhydrol.2015.11.027
|
Zhang Ruifeng, Yan Chongling, Liu Jingchun. 2013. Effect of mangroves on the horizontal and vertical distributions of rare earth elements in sediments of the Zhangjiang Estuary in Fujian Province, southeastern China. Journal of Coastal Research, 29(6): 1341–1350. doi: 10.2112/JCOASTRES-D-11-00215.1
|
Zhu Xudong, Sun Chenyang, Qin Zhangcai. 2021. Drought-induced salinity enhancement weakens mangrove greenhouse gas cycling. Journal of Geophysical Research: Biogeosciences, 126(8): e2021JG006416. doi: 10.1029/2021JG006416
|
Supplementary information.pdf |