Citation: | Yizhuo Chen, Xiaoping Pang, Qing Ji, Zhongnan Yan, Zeyu Liang, Chenlei Zhang. Retrieval of Antarctic sea ice freeboard and thickness from HY-2B satellite altimeter data[J]. Acta Oceanologica Sinica, 2024, 43(3): 87-101. doi: 10.1007/s13131-023-2250-2 |
Armitage T W K, Davidson M W J. 2014. Using the interferometric capabilities of the ESA CryoSat-2 mission to improve the accuracy of sea ice freeboard retrievals. IEEE Transactions on Geoscience and Remote Sensing, 52(1): 529–536, doi: 10.1109/TGRS.2013.2242082
|
Armitage T W K, Ridout A L. 2015. Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and operation IceBridge. Geophysical Research Letters, 42(16): 6724–6731, doi: 10.1002/2015GL064823
|
Chen Chuntao, Zhu Jianhua, Ma Chaofei, et al. 2021. Preliminary calibration results of the HY-2B altimeter’s SSH at China’s Wanshan calibration site. Acta Oceanologica Sinica, 40(5): 129–140, doi: 10.1007/s13131-021-1745-y
|
Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35(1): L01703
|
Crosta X, Kohfeld K E, Bostock H C, et al. 2022. Antarctic sea ice over the past 130 000 years—Part 1: a review of what proxy records tell us. Climate of the Past, 18(8): 1729–1756, doi: 10.5194/cp-18-1729-2022
|
Drüe C, Heinemann G. 2004. High-resolution maps of the sea-ice concentration from MODIS satellite data. Geophysical Research Letters, 31(20): L20403
|
Farrell S L, Markus T, Kwok R, et al. 2011. Laser altimetry sampling strategies over sea ice. Annals of Glaciology, 52(57): 69–76, doi: 10.3189/172756411795931660
|
Fons S W, Kurtz N T, Bagnardi M, et al. 2021. Assessing CryoSat-2 Antarctic snow freeboard retrievals using data from ICESat-2. Earth and Space Science, 8(7): e2021EA001728, doi: 10.1029/2021EA001728
|
Haas C, Lobach J, Hendricks S, et al. 2009. Helicopter-borne measurements of sea ice thickness, using a small and lightweight, digital EM system. Journal of Applied Geophysics, 67(3): 234–241, doi: 10.1016/j.jappgeo.2008.05.005
|
Helm V, Humbert A, Miller H. 2014. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere, 8(4): 1539–1559, doi: 10.5194/tc-8-1539-2014
|
Holland M M, Bitz C M, Hunke E C, et al. 2006. Influence of the sea ice thickness distribution on polar climate in CCSM3. Journal of Climate, 19(11): 2398–2414, doi: 10.1175/JCLI3751.1
|
Jia Yongjun, Yang Jungang, Lin Mingsen, et al. 2020. Global assessments of the HY-2B measurements and cross-calibrations with Jason-3. Remote Sensing, 12(15): 2470, doi: 10.3390/rs12152470
|
Jiang Chengfei, Lin Mingsen, Wei Hao. 2019. A study of the technology used to distinguish sea ice and seawater on the Haiyang-2A/B (HY-2A/B) altimeter data. Remote Sensing, 11(12): 1490, doi: 10.3390/rs11121490
|
Kern S, Khvorostovsky K, Skourup H, et al. 2015. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise. The Cryosphere, 9(1): 37–52, doi: 10.5194/tc-9-37-2015
|
Kurtz N T, Galin N, Studinger M. 2014. An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting. The Cryosphere, 8(4): 1217–1237, doi: 10.5194/tc-8-1217-2014
|
Kurtz N T, Markus T. 2012. Satellite observations of Antarctic sea ice thickness and volume. Journal of Geophysical Research: Oceans, 117(C8): C08025
|
Kurtz N T, Markus T, Cavalieri D J, et al. 2009. Estimation of sea ice thickness distributions through the combination of snow depth and satellite laser altimetry data. Journal of Geophysical Research: Oceans, 114(C10): C10007
|
Kwok R. 2010. Satellite remote sensing of sea-ice thickness and kinematics: a review. Journal of Glaciology, 56(200): 1129–1140, doi: 10.3189/002214311796406167
|
Kwok R, Cunningham G F, Manizade S S, et al. 2012. Arctic sea ice freeboard from IceBridge acquisitions in 2009: Estimates and comparisons with ICESat. Journal of Geophysical Research: Oceans, 117(C2): C02018
|
Kwok R, Kacimi S. 2018. Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2. The Cryosphere, 12(8): 2789–2801, doi: 10.5194/tc-12-2789-2018
|
Kwok R, Kacimi S, Markus T, et al. 2019. ICESat-2 surface height and sea ice freeboard assessed with ATM Lidar acquisitions from operation IceBridge. Geophysical Research Letters, 46(20): 11228–11236, doi: 10.1029/2019GL084976
|
Kwok R, Kacimi S, Webster M A, et al. 2020. Arctic snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: A first examination. Journal of Geophysical Research: Oceans, 125(3): e2019JC016008, doi: 10.1029/2019JC016008
|
Landy J C, Petty A A, Tsamados M, et al. 2020. Sea ice roughness overlooked as a key source of uncertainty in CryoSat-2 ice freeboard retrievals. Journal of Geophysical Research: Oceans, 125(5): e2019JC015820, doi: 10.1029/2019JC015820
|
Landy J C, Tsamados M, Scharien R K. 2019. A facet-based numerical model for simulating SAR altimeter echoes from heterogeneous sea ice surfaces. IEEE Transactions on Geoscience and Remote Sensing, 57(7): 4164–4180, doi: 10.1109/TGRS.2018.2889763
|
Laxon S W, Giles K A, Ridout A L, et al. 2013. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophysical Research Letters, 40(4): 732–737, doi: 10.1002/grl.50193
|
Laxon S, Peacock N, Smith D. 2003. High interannual variability of sea ice thickness in the Arctic region. Nature, 425(6961): 947–950, doi: 10.1038/nature02050
|
Lee S, Im J, Kim J, et al. 2016. Arctic sea ice thickness estimation from CryoSat-2 satellite data using machine learning-based lead detection. Remote Sensing, 8(9): 698, doi: 10.3390/rs8090698
|
Lee Y K, Kongoli C, Key J. 2015. An in-depth evaluation of heritage algorithms for snow cover and snow depth using AMSR-E and AMSR2 measurements. Journal of Atmospheric and Oceanic Technology, 32(12): 2319–2336, doi: 10.1175/JTECH-D-15-0100.1
|
Lewis R J. 2000. An introduction to classification and regression tree (CART) analysis. In: Presented at the 2000 Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California (Vol. 14). Torrance: Department of Emergency Medicine Harbor-UCLA Medical Center
|
Li Wanwu, Liu Lin, Zhang Jixian. 2021. Fusion of SAR and optical image for sea ice extraction. Journal of Ocean University of China, 20(6): 1440–1450, doi: 10.1007/s11802-021-4824-y
|
Li Huan, Xie Hongjie, Kern S, et al. 2018. Spatio-temporal variability of Antarctic sea-ice thickness and volume obtained from ICESat data using an innovative algorithm. Remote Sensing of Environment, 219: 44–61, doi: 10.1016/j.rse.2018.09.031
|
Maksym T, Markus T. 2008. Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth. Journal of Geophysical Research: Oceans, 113(C2): C02S12
|
Markus T, Cavalieri, D J. 1998. Snow depth distribution over sea ice in the Southern Ocean from satellite passive microwave data. Antarctic sea ice: physical processes, interactions and variability, 74, 19-39
|
Markus T, Neumann T, Martino A, et al. 2017. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment, 190: 260–273, doi: 10.1016/j.rse.2016.12.029
|
Ozsoy-Cicek B, Ackley S, Xie Hongjie, et al. 2013. Sea ice thickness retrieval algorithms based on in situ surface elevation and thickness values for application to altimetry. Journal of Geophysical Research: Oceans, 118(8): 3807–3822, doi: 10.1002/jgrc.20252
|
Passaro M, Müller F L, Dettmering D. 2018. Lead detection using Cryosat-2 delay-doppler processing and Sentinel-1 SAR images. Advances in Space Research, 62(6): 1610–1625, doi: 10.1016/j.asr.2017.07.011
|
Reiser F, Willmes S, Heinemann G. 2020. A new algorithm for daily sea ice lead identification in the Arctic and Antarctic winter from thermal-infrared satellite imagery. Remote Sensing, 12(12): 1957, doi: 10.3390/rs12121957
|
Ricker R, Hendricks S, Helm V, et al. 2014. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. The Cryosphere, 8(4): 1607–1622, doi: 10.5194/tc-8-1607-2014
|
Shi Lijian, Karvonen J, Cheng Bin, et al. 2014. Sea ice thickness retrieval from SAR imagery over Bohai Sea. In: 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City: IEEE, 4864–4867
|
Spreen G, Kern S, Stammer D, et al. 2006. Satellite-based estimates of sea-ice volume flux through Fram Strait. Annals of Glaciology, 44: 321–328, doi: 10.3189/172756406781811385
|
Tian Liuxi, Xie Hongjie, Ackley S F, et al. 2020. Sea-ice freeboard and thickness in the Ross Sea from airborne (IceBridge 2013) and satellite (ICESat 2003–2008) observations. Annals of Glaciology, 61(82): 24–39, doi: 10.1017/aog.2019.49
|
Turner J, Comiso J C, Marshall G J, et al. 2009. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophysical Research Letters, 36(8): L08502
|
Wang Jinfei, Min Chao, Ricker R, et al. 2022. A comparison between Envisat and ICESat sea ice thickness in the Southern Ocean. The Cryosphere, 16(10): 4473–4490, doi: 10.5194/tc-16-4473-2022
|
Wang Xianwei, Xie Hongjie, Ke Yanan, et al. 2013. A method to automatically determine sea level for referencing snow freeboards and computing sea ice thicknesses from NASA IceBridge airborne LIDAR. Remote Sensing of Environment, 131: 160–172, doi: 10.1016/j.rse.2012.12.022
|
Weissling B P, Lewis M J, Ackley S F. 2011. Sea-ice thickness and mass at Ice Station Belgica, Bellingshausen Sea, Antarctica. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(9/10): 1112–1124, doi: 10.1016/j.dsr2.2010.10.032
|
Williams G, Maksym T, Wilkinson J, et al. 2015. Thick and deformed Antarctic sea ice mapped with autonomous underwater vehicles. Nature Geoscience, 8(1): 61–67, doi: 10.1038/ngeo2299
|
Willmes S, Heinemann G. 2015. Pan-Arctic lead detection from MODIS thermal infrared imagery. Annals of Glaciology, 56(69): 29–37, doi: 10.3189/2015AoG69A615
|
Worby A P, Geiger C A, Paget M J, et al. 2008. Thickness distribution of Antarctic sea ice. Journal of Geophysical Research: Oceans, 113(C5): C05S92
|
Worby A P, Steer A, Lieser J L, et al. 2011. Regional-scale sea-ice and snow thickness distributions from in situ and satellite measurements over East Antarctica during SIPEX 2007. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(9/10): 1125–1136, doi: 10.1016/j.dsr2.2010.12.001
|
Xie Hongjie, Ackley S F, Yi Donghui, et al. 2011. Sea-ice thickness distribution of the Bellingshausen Sea from surface measurements and ICESat altimetry. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(9/10): 1039–1051, doi: 10.1016/j.dsr2.2010.10.038
|
Xie Hongjie, Tekeli A E, Ackley S F, et al. 2013. Sea ice thickness estimations from ICESat altimetry over the Bellingshausen and Amundsen Seas, 2003–2009. Journal of Geophysical Research: Oceans, 118(5): 2438–2453, doi: 10.1002/jgrc.20179
|
Yi Donghui, Zwally H J, Robbins J W. 2011. ICESat observations of seasonal and interannual variations of sea-ice freeboard and estimated thickness in the Weddell Sea, Antarctica (2003–2009). Annals of Glaciology, 52(57): 43–51, doi: 10.3189/17275641 1795931480
|
Zhang Xi, Zhu Yixun, Zhang Jie, et al. 2021. Assessment of Arctic sea ice classification ability of Chinese HY-2B dual-band radar altimeter during winter to early spring conditions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 9855–9872, doi: 10.1109/JSTARS.2021.3114228
|
Zhong Wenqing, Jiang Maofei, Xu Ke, et al. 2023. Arctic sea ice lead detection from Chinese HY-2B radar altimeter data. Remote Sensing, 15(2): 516, doi: 10.3390/rs15020516
|
Zwally H J, Yi Donghui, Kwok R, et al. 2008. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. Journal of Geophysical Research: Oceans, 113(C2): C02S15
|