Volume 43 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Genggeng Wen, Kuiyuan Wan, Shaohong Xia, Xiuwei Ye, Huilong Xu, Chaoyan Fan, Jinghe Cao, Shunshan Xu. Tomographic inversion of OBS converted shear waves: case study of profile EW6 in the Dongsha area[J]. Acta Oceanologica Sinica, 2024, 43(8): 13-25. doi: 10.1007/s13131-023-2274-7
Citation: Genggeng Wen, Kuiyuan Wan, Shaohong Xia, Xiuwei Ye, Huilong Xu, Chaoyan Fan, Jinghe Cao, Shunshan Xu. Tomographic inversion of OBS converted shear waves: case study of profile EW6 in the Dongsha area[J]. Acta Oceanologica Sinica, 2024, 43(8): 13-25. doi: 10.1007/s13131-023-2274-7

Tomographic inversion of OBS converted shear waves: case study of profile EW6 in the Dongsha area

doi: 10.1007/s13131-023-2274-7
Funds:  The National Natural Science Foundation of China under contract Nos 42276062 and 42006071; the Seismological Research Foundation for Youths of Guangdong Earthquake Agency under contract No. GDDZY202307; the Strategic Priority Research Program of Chinese Academy of Sciences under contract No. XDA22020303; the Science and Technology Planning Project of Guangdong Province-Guangdong Collaborative Innovation Center for Earthquake Prevention and Disaster Mitigation Technology under contract No. 2018B020207011.
More Information
  • Corresponding author: E-mail: kywan@scsio.ac.cnshxia@scsio.ac.cn
  • Received Date: 2023-04-28
  • Accepted Date: 2023-09-29
  • Available Online: 2024-04-30
  • Publish Date: 2024-08-25
  • Studies of converted S-wave data recorded on the ocean bottom seismometer (OBS) allow for the estimation of crustal S-wave velocity, from which is further derived the Vp/Vs ratio to constrain the crustal lithology and geophysical properties. Constructing a precise S-wave velocity model is important for deep structural research, and inversion of converted S-waves provides a potential solution. However, the inversion of the converted S-wave remains a weakness because of the complexity of the seismic ray path and the inconsistent conversion interface. In this study, we introduced two travel time correction methods for the S-wave velocity inversion and imaged different S-wave velocity structures in accordance with the corresponding corrected S-wave phases using seismic data of profile EW6 in the northeastern South China Sea (SCS). The two inversion models show a similar trend in velocities, and the velocity difference is <0.15 km/s (mostly in the range of 0–0.1 km/s), indicating the accuracy of the two travel time correction methods and the reliability of the inversion results. According to simulations of seismic ray tracing based on different models, the velocity of sediments is the primary influencing factor in ray tracing for S-wave phases. If the sedimentary layer has high velocities, the near offset crustal S-wave refractions cannot be traced. In contrast, the ray tracing of Moho S-wave reflections was not significantly impacted by the velocity of the sediments. The two travel time correction methods have their own advantages, and the application of different approaches is based on additional requirements. These works provide an important reference for future improvements in converted S-wave research.
  • loading
  • Chian D, Louden K E. 1994. The continent-ocean crustal transition across the southwest Greenland margin. Journal of Geophysical Research: Solid Earth, 99(B5): 9117–9135, doi: 10.1029/93JB03404
    Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental crust: a global view. Journal of Geophysical Research: Solid Earth, 100(B6): 9761–9788, doi: 10.1029/95JB00259
    Christensen N I. 1996. Poisson's Ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2): 3139–3156, doi: 10.1029/95JB03446
    Digranes P, Mjelde R, Kodaira S, et al. 1998. A regional shear-wave velocity model in the central Vøring Basin, N. Norway, using three-component Ocean Bottom Seismographs. Tectonophysics, 293(3–4): 157–174, doi: 10.1016/S0040-1951(98)00093-6
    Du Shuyuan, Cao Jingpu, Zhou Shihong, et al. 2020. Observation and inversion of very-low-frequency seismo-acoustic fields in the South China Sea. The Journal of the Acoustical Society of America, 148(6): 3992–4001, doi: 10.1121/10.0002949
    Eccles J. 2008. Shear wave analysis of volcanic rifted continental margins in the North Atlantic [dissertation]. Cambridge: University of Cambridge.
    Eccles J D, White R S, Christie P A F. 2009. Identification and inversion of converted shear waves: case studies from the European North Atlantic continental margins. Geophysical Journal International, 179(1): 381–400, doi: 10.1111/j.1365-246X.2009.04290.x
    Eccles J D, White R S, Christie P A F. 2011. The composition and structure of volcanic rifted continental margins in the North Atlantic: further insight from shear waves. Tectonophysics, 508(1-4): 22–33, doi: 10.1016/j.tecto.2010.02.001
    Fan Chaoyan, Xia Shaohong, Cao Jinghe, et al. 2019. Lateral crustal variation and post-rift magmatism in the northeastern South China Sea determined by wide-angle seismic data. Marine Geology, 410: 70–87, doi: 10.1016/j.margeo.2018.12.007
    Fan Chaoyan, Xia Shaohong, Cao Jinghe, et al. 2022. Seismic constraints on a remnant Mesozoic forearc basin in the northeastern South China Sea. Gondwana Research, 102: 77–94, doi: 10.1016/j.gr.2020.10.006
    Fan Chaoyan, Xia Shaohong, Zhao Fang, et al. 2017. New insights into the magmatism in the northern margin of the South China Sea: spatial features and volume of intraplate seamounts. Geochemistry, Geophysics, Geosystems, 18(6): 2216–2239, doi: 10.1002/2016GC006792
    Gao Jinwei, Wu Shiguo, McIntosh K, et al. 2015. The continent–ocean transition at the mid-northern margin of the South China Sea. Tectonophysics, 654: 1–19, doi: 10.1016/j.tecto.2015.03.003
    Grevemeyer I, Hayman N W, Peirce C, et al. 2018. Episodic magmatism and serpentinized mantle exhumation at an ultraslow-spreading centre. Nature Geoscience, 11(6): 444–448, doi: 10.1038/s41561-018-0124-6
    Hao Hujun, Shi Hesheng, Zhang Xiangtao, et al. 2009. Mesozoic sediments and their petroleum geology conditions in Chaoshan sag: a discussion based on drilling results from the exploratory well LF35-1-1. China Offshore Oil and Gas (in Chinese), 21(3): 151–156, doi: 10.3969/j.issn.1673-1506.2009.03.002
    Hou Wenai, Li Chunfeng, Wan Xiaoli, et al. 2019. Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation. Earth and Planetary Physics, 3(4): 314–329, doi: 10.26464/epp2019033
    Kodaira S, Bellenberg M, Iwasaki T, et al. 1996. Vp/Vs ratio structure of the Lofoten continental margin, northern Norway, and its geological implications. Geophysical Journal International, 124(3): 724–740, doi: 10.1111/j.1365-246X.1996.tb05634.x
    Korenaga J, Holbrook W S, Kent G M, et al. 2000. Crustal structure of the Southeast Greenland margin from joint refraction and reflection seismic tomography. Journal of Geophysical Research: Solid Earth, 105(B9): 21591–21614, doi: 10.1029/2000JB900188
    Lester R, Van Avendonk H J A, Mcintosh K, et al. 2014. Rifting and magmatism in the northeastern South China Sea from wide-angle tomography and seismic reflection imaging. Journal of Geophysical Research: Solid Earth, 119(3): 2305–2323, doi: 10.1002/2013JB010639
    Li Yuhan, Grevemeyer I, Huang Haibo, et al. 2021. Seismic constraint from Vp/Vs ratios on the structure and composition across the continent‐ocean transition zone, South China Sea. Geophysical Research Letters, 48(16): e2021GL094656, doi: 10.1029/2021GL094656
    Li Yuhan, Grevemeyer I, Huang Haibo, et al. 2022. Crustal compositional variations from continental to oceanic domain: a V P/V S ratio study across the zhongsha block, South China Sea. Journal of Geophysical Research: Solid Earth, 127(5): e2021JB023470, doi: 10.1029/2021JB023470
    Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, 35(2): 179–182, doi: 10.1130/G23193A.1
    Liu Leifeng, Xia Shaohong, Fang Yunxin, et al. 2022. Study of 1-D velocity structure of hydrate in Shenhu Area, South China Sea: based on the constraints of the hydrate zone with moderate to low saturation. Geological Journal of China Universities (in Chinese), 28(3): 424–439, doi: 10.16108/j.issn1006-7493.2021010
    Liu Yutao, Li Chunfeng, Qiu Xuelin, et al. 2023. Vp/Vs ratios beneath a hyper-extended failed rift support a magma-poor continental margin in the northeastern South China Sea. Tectonophysics, 846: 229652, doi: 10.1016/j.tecto.2022.229652
    Ma Fei, Huang Haibo, Qiu Xuelin, et al. 2021. Influence of shallow structure uncertainty on wide-angle seismic traveltime forward modeling-A case study using OBS2011–1 on the Xisha Block. Chinese Journal of Geophysics (in Chinese), 64(10): 3669–3684
    Mjelde R. 1992. Shear waves from three-component ocean bottom seismographs off Lofoten, Norway, indicative of anisotropy in the lower crust. Geophysical Journal International, 110(2): 283–296, doi: 10.1111/j.1365-246X.1992.tb00874.x
    Mjelde R, Raum T, Digranes P, et al. 2003. Vp/Vs ratio along the Vøring Margin, NE Atlantic, derived from OBS data: implications on lithology and stress field. Tectonophysics, 369(3-4): 175–197, doi: 10.1016/S0040-1951(03)00198-7
    Mjelde R, Raum T, Myhren B, et al. 2005. Continent-ocean transition on the Vøring Plateau, NE Atlantic, derived from densely sampled ocean bottom seismometer data. Journal of Geophysical Research: Solid Earth, 110(B5): B05101, doi: 10.1029/2004JB003026
    Nissen S S, Hayes D E, Buhl P, et al. 1995. Deep penetration seismic soundings across the northern margin of the South China Sea. Journal of Geophysical Research: Solid Earth, 100(B11): 22407–22433, doi: 10.1029/95JB01866
    Qi Jianghao, Zhang Xunhua, Wu Zhiqiang, et al. 2021. Characteristics of crustal variation and extensional break-up in the Western Pacific back-arc region based on a wide-angle seismic profile. Geoscience Frontiers, 12(3): 101082, doi: 10.1016/j.gsf.2020.09.011
    Qiu Xuelin, Zhao Minghui, Ao Wei, et al. 2011. OBS survey and crustal structure of the Southwest Sub-basin and Nansha Block, South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12): 3117–3128, doi: 10.3969/j.issn.0001-5733.2011.12.012
    Ruan Aiguo, Niu Xiongwei, Wu Zhenli, et al. 2009. The 2D velocity and density structure of the Mesozoic sediments in the Chaoshan depression. Geological Journal of China Universities (in Chinese), 15(4): 522–528
    Satyavani N, Sain K, Gupta H K. 2016. Ocean bottom seismometer data modeling to infer gas hydrate saturation in Krishna-Godavari (KG) basin. Journal of Natural Gas Science and Engineering, 33: 908–917, doi: 10.1016/j.jngse.2016.06.037
    Schoenberg M, Protazio J. 1992. ‘Zoeppritz’ rationalized and generalized to anisotropy. Journal of Seismic Exploration, 1: 125–144
    Shao Lei, You Hongqing, Hao Hujun, et al. 2007. Petrology and depositional environments of mesozoic strata in the northeastern South China Sea. Geological Review (in Chinese), 53(2): 164–169, doi: 10.3321/j.issn:0371-5736.2007.02.003
    Shi Hesheng, Li Chunfeng. 2012. Mesozoic and early Cenozoic tectonic convergence-to-rifting transition prior to opening of the South China Sea. International Geology Review, 54(15): 1801–1828, doi: 10.1080/00206814.2012.677136
    Sibuet J C, Yeh Y C, Lee C S. 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98–119, doi: 10.1016/j.tecto.2016.02.022
    Singhroha S, Chand S, Bünz S. 2019. Constraints on gas hydrate distribution and morphology in vestnesa ridge, western svalbard margin, using multicomponent ocean‐bottom seismic data. Journal of Geophysical Research: Solid Earth, 124(5): 4343–4364, doi: 10.1029/2018JB016574
    Sun Qiliang, Alves T M, Zhao Minghui, et al. 2020. Post-rift magmatism on the northern South China Sea margin. GSA Bulletin, 132(11-12): 2382–2396, doi: 10.1130/B35471.1
    Wan Xiaoli, Li Chunfeng, Zhao Minghui, et al. 2019. Seismic velocity structure of the magnetic quiet zone and continent‐ocean boundary in the northeastern South China Sea. Journal of Geophysical Research: Solid Earth, 124(11): 11866–11899, doi: 10.1029/2019JB017785
    Wan Kuiyuan, Xia Shaohong, Cao Jinghe, et al. 2017. Deep seismic structure of the northeastern South China Sea: origin of a high-velocity layer in the lower crust. Journal of Geophysical Research: Solid Earth, 122(4): 2831–2858, doi: 10.1002/2016 JB013481
    Wang T K, Chen Mingkai, Lee C S, et al. 2006. Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics, 412(3–4): 237–254, doi: 10.1016/j.tecto.2005.10.039
    Wang Yuan, You Qingyu, Hao Tianyao. 2022. Estimating the shear-wave velocities of shallow sediments in the Yellow Sea using ocean-bottom-seismometer multicomponent scholte-wave data. Frontiers in Earth Science, 10: 812744, doi: 10.3389/feart.2022.812744
    Wei Xiaodong, Ruan Aiguo, Li Jiabiao, et al. 2017. S-wave velocity structure and tectonic implications of the northwestern sub-basin and Macclesfield of the South China Sea. Marine Geophysical Research, 38(1–2): 125–136, doi: 10.1007/s11001-016-9288-x
    Wei Xiaodong, Ruan Aiguo, Zhao Minghui, et al. 2015. Shear wave velocity structure of Reed Bank, southern continental margin of the South China Sea. Tectonophysics, 644–645: 151–160, doi: 10.1016/j.tecto.2015.01.006
    Wei Xiaodong, Zhao Minghui, Ruan Aiguo, et al. 2011. Crustal structure of shear waves and its tectonic significance in the mid-northern continental margin of the South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12): 3150–3160, doi: 10.3969/j.issn.0001-5733.2011.12.015
    Wen Genggeng, Wan Kuiyuan, Xia Shaohong, et al. 2021a. Travel-time inversion method of converted shear waves using rayinvr algorithm. Applied Sciences, 11(8): 3571, doi: 10.3390/app 11083571
    Wen Genggeng, Wan Kuiyuan, Xia Shaohong, et al. 2021b. Crustal extension and magmatism along the northeastern margin of the South China Sea: further insights from shear waves. Tectonophysics, 817: 229073, doi: 10.1016/j.tecto.2021.229073
    Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. Eos, Transactions American Geophysical Union, 79(47): 579,doi: 10.1029/98EO00426
    Xia Shaohong, Cao Jinghe, Wan Kuiyuan, et al. 2016. Role of the wide-angle OBS seismic exploration in the research of marine sedimentary basin. Advances in Earth Science (in Chinese), 31(11): 1111–1124, doi: 10.11867/j.issn.1001-8166.2016.11.1111
    Xia Shaohong, Qiu Xuelin, Zhao Minghui, et al. 2007. Data processing of onshore-offshore seismic experiment in Hongkong and Zhujiang River Delta region. Journal of Tropical Oceanography (in Chinese), 26(1): 35–38
    Xia Shaohong, Zhao Fang, Zhao Dapeng, et al. 2018. Crustal plumbing system of post-rift magmatism in the northern margin of South China Sea: new insights from integrated seismology. Tectonophysics, 744: 227–238, doi: 10.1016/j.tecto.2018.07.002
    Yan Pin, Wang Liaoliang, Wang Yanlin. 2014. Late Mesozoic compressional folds in Dongsha Waters, the northern margin of the South China Sea. Tectonophysics, 615–616: 213–223,doi: 10.1016/j.tecto.2014.01.009
    Yan Pin, Zhou Di, Liu Zhaoshu. 2001. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338(1): 1–21, doi: 10.1016/S0040-1951(01)00062-2
    Yang Shengxiong, Qiu Yan, Zhu Benduo, et al. 2015. Atlas of Geology and Geophysics of the South China Sea (in Chinese). Tianjin: China Navigation Publications.
    Zelt C A, Smith R B. 1992. Seismic traveltime inversion for 2-D crustal velocity structure. Geophysical Journal International, 108(1): 16–34, doi: 10.1111/j.1365-246X.1992.tb00836.x
    Zhang Jie, Li Jiabiao, Ruan Aiguo, et al. 2018. Application of converted S-waves from the active-source ocean bottom seismometer experiment. Earth Science (in Chinese), 43(10): 3778–3791
    Zhang Haoyu, Qiu Xuelin, Huang Haibo, et al. 2022. CALM: a software tool for rapid analysis and modeling of converted shear waves in wide-angle seismic data. Computers & Geosciences, 166: 105163, doi: 10.1016/j.cageo.2022.105163
    Zhang Li, Zhao Minghui, Qiu Xulin, et al. 2016. Recent progress of converted shear-wave phase identification in Nansha Block using ocean bottom seismometers data. Journal of Tropical Oceanography (in Chinese), 35(1): 61–71, doi: 10.11978/2015 025
    Zhao Minghui, Qiu Xuelin, Xia Kanyuan, et al. 2004. Onshore-offshore seismic data processing and preliminary results in NE South China Sea. Journal of Tropical Oceanography (in Chinese), 23(1): 58–63
    Zhao Minghui, Qiu Xuelin, Xia Shaohong, et al. 2007. Identification and analysis of shear waves recorded by three-component OBSs in northeastern South China Sea. Progress in Natural Science (in Chinese), 17(11): 1516–1523.
    Zhao Minghui, Qiu Xuelin, Xia Shaohong, et al. 2010. Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data. Tectonophysics, 480(1-4): 183–197, doi: 10.1016/j.tecto.2009.10.004
    Zhao Weina, Wu Zhiqiang, Hou Fanghui, et al. 2023. Velocity structure in the South Yellow Sea basin based on first-arrival tomography of wide-angle seismic data and its geological implications. Acta Oceanologica Sinica, 42(2): 104–119, doi: 10.1007/s13131-022-2028-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (124) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return