Volume 43 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Jingjing Gao, Jihua Liu, Hui Zhang, Shijuan Yan, Xiangwen Ren, Quanshu Yan. The occurrence phases and enrichment mechanism of rare earth elements in cobalt-rich crusts from Marcus-Wake Seamounts[J]. Acta Oceanologica Sinica, 2024, 43(8): 58-68. doi: 10.1007/s13131-023-2276-5
Citation: Jingjing Gao, Jihua Liu, Hui Zhang, Shijuan Yan, Xiangwen Ren, Quanshu Yan. The occurrence phases and enrichment mechanism of rare earth elements in cobalt-rich crusts from Marcus-Wake Seamounts[J]. Acta Oceanologica Sinica, 2024, 43(8): 58-68. doi: 10.1007/s13131-023-2276-5

The occurrence phases and enrichment mechanism of rare earth elements in cobalt-rich crusts from Marcus-Wake Seamounts

doi: 10.1007/s13131-023-2276-5
Funds:  The fund of Laoshan Laboratory under contract Nos LSKJ202203602 and LSKJ202204103; the China Ocean Mineral Resource Research and Development Association Research Program under contract No. DY135-C1-1-04; the Taishan Scholarship from Shandong Province.
More Information
  • Corresponding author: E-mail: gaojingjing8@163.com
  • Received Date: 2023-07-21
  • Accepted Date: 2023-10-16
  • Publish Date: 2024-08-25
  • To explore the occurrence phases and enrichment mechanism of rare earth elements (REEs) in cobalt-rich crusts, this study analyzes the mineral composition and REE contents of the samples from Marcus-Wake Seamounts by XRD, ICP-OES and ICP-MS. The results show that, (1) the cobalt-rich crusts contain the major crystalline mineral (vernadite), the secondary minerals (quartz, plagioclase and carbonate fluorapatite), and a large amount of amorphous ferric oxyhydroxides (FeOOH). (2) The cobalt-rich crusts contains higher Mn (10.83% to 28.76%) and Fe (6.14% to 18.86%) relative to other elements, and are enriched in REEs, with total REE contents of 1 563−3 238 µg/g and Ce contents of 790−1 722 µg/g. Rare earth element contents of the old crusts are higher than those of the new crusts. Moreover, the non-phosphatized crusts have positive Ce and negative Y anomalies, and yet the phosphatized crusts have positive Ce and positive Y anomalies, indicating that cobalt-rich crusts is hydrogenetic and REEs mainly come from seawater. (3) Analytical data also show that the occurrence phases of elements in cobalt-rich crusts are closely related to their mineral phases. In the non-phosphatized crusts, REEs are adsorbed by colloidal particles into the crusts (about 67% of REEs in the Fe oxide phase, and about 17% of REEs in the Mn oxide phase). In contrast, in the phosphatized crusts (affected by the phosphatization), REEs may combine with phosphate to form rare earth phosphate minerals, and about 64% of REEs are enriched in the residual phase containing carbonate fluorapatite, but correspondingly the influence of Fe and Mn oxide phases on REEs enrichment is greatly reduced. In addition, the oxidizing environment of seawater, high marine productivity, phosphatization, and slow growth rate can promote the REE enrichment. This study provides a reference for the metallogenesis of cobalt-rich crusts in the Pacific.
  • loading
  • Asavin A M, Kubrakova I V, Mel’nikov M E, et al. 2010. Geochemical zoning in ferromanganese crusts of Ita-MaiTai Guyot. Geochemistry International, 48(5): 423–445, doi: 10.1134/S0016702910050010
    Azami K, Hirano N, Machida S, et al. 2018. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts. Chemical Geology, 493: 224–233, doi: 10.1016/j.chemgeo.2018.05.045
    Bai Zhimin, Wang Yingbin, Jiang Bo, et al. 2004. Occurrence modes of REE in the Pacific cobalt-rich crusts. Earth Science Frontiers (in Chinese), 11(2): 387–392
    Bau M, Koschinsky A. 2009. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochemical Journal, 43(1): 37–47, doi: 10.2343/geochemj.1.0005
    Bau M, Schmidt K, Koschinsky A, et al. 2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geology, 381: 1–9, doi: 10.1016/j.chemgeo.2014.05.004
    Bonatti E, Kraemer T, Rydell H. 1972. Classification and genesis of submarine iron-manganese deposits. In: Horn D R, ed. Ferromanganese Deposits of the Ocean Floor. Washington, US: National Science Foundation, 149–166
    Charles C, Pelleter E, Révillon S, et al. 2020. Intermediate and deep ocean current circulation in the Mozambique Channel: new insights from ferromanganese crust Nd isotopes. Marine Geology, 430: 106356, doi: 10.1016/j.margeo.2020.106356
    Conrad T, Hein J R, Paytan A, et al. 2017. Formation of Fe-Mn crusts within a continental margin environment. Ore Geology Reviews, 87: 25–40, doi: 10.1016/j.oregeorev.2016.09.010
    Cui Yingchun, Shi Xuefa, Liu Jihua, et al. 2012. Records of past 70 Ma dust activities in ferromanganese crusts from Pacific Ocean. Journal of Jilin University (Earth Science Edition) (in Chinese), 42(2): 393–399
    Fukami Y, Kashiwabara T, Amakawa H, et al. 2022. Tellurium stable isotope composition in the surface layer of ferromanganese crusts from two seamounts in the Northwest Pacific Ocean. Geochimica et Cosmochimica Acta, 318: 279–291, doi: 10.1016/j.gca.2021.12.005
    Gao Jingjing, Liu Jihua, Li Xianguo, et al. 2015. Chemical phase analysis of rare earth elements in cobalt-rich crusts and its application. Chinese Journal of Analytical Chemistry (in Chinese), 43(12): 1895–1900
    Gao Jingjing, Liu Jihua, Zhang Hui, et al. 2023. Geochemistry and occurrence phase of the elements in cobalt-rich crusts from the Magellan Seamounts. Oceanologia et Limnologia Sinica (in Chinese), 54(2): 424–435
    Goto K T, Nozaki T, Toyofuku T, et al. 2017. Paleoceanographic conditions on the São Paulo Ridge, SW Atlantic Ocean, for the past 30 million years inferred from Os and Pb isotopes of a hydrogenous ferromanganese crust. Deep-Sea Research Part II: Topical Studies in Oceanography, 146: 82–92, doi: 10.1016/j.dsr2.2016.10.010
    Gueguen B, Rouxel O, Fouquet Y. 2021. Nickel isotopes and rare earth elements systematics in marine hydrogenetic and hydrothermal ferromanganese deposits. Chemical Geology, 560: 119999, doi: 10.1016/j.chemgeo.2020.119999
    Gueguen B, Rouxel O, Rouget M L, et al. 2016. Comparative geochemistry of four ferromanganese crusts from the Pacific Ocean and significance for the use of Ni isotopes as paleoceanographic tracers. Geochimica et Cosmochimica Acta, 189: 214–235, doi: 10.1016/j.gca.2016.06.005
    Halbach P. 1986. Processes controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts. Geologische Rundschau, 75(1): 235–247, doi: 10.1007/BF01770191
    Halbach P, Segl M, Puteanus D, et al. 1983. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount area. Nature, 304(5928): 716–719, doi: 10.1038/304716a0
    Halbach P E, Jahn A, Cherkashov G. 2017. Marine Co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources. In: Sharma R, ed. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer International Publishing, 65–141
    He Gaowen, Sun Xiaoming, Yang Shengxiong, et al. 2011. A comparison of REE geochemistry between polymetallic nodules and cobaltrich crusts in the Pacific Ocean. Geology in China (in Chinese), 38(2): 462–472
    He Gaowen, Xue Ting, Sun Xiaoming, et al. 2005. The Elemental association characterisitics and the geological significance of cobalt-rich crusts in the West Pacific Ocean. Bulletin of Mineralogy, Petrology and Geochemistry (in Chinese), 24(2): 125–129
    Hein J R, Conrad T A, Frank M, et al. 2012. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific. Geochemistry, Geophysics, Geosystems, 13(10): Q10022
    Hein J R, Conrad T, Mizell K, et al. 2016. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 110: 1–19, doi: 10.1016/j.dsr.2015.11.006
    Hein J R, Koschinsky A. 2014. Deep-ocean ferromanganese crusts and nodules. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier Limited, 273–291
    Hein J R, Koschinsk A, Bau M, et al. 2000. Cobalt-rich ferromanganese crusts in the Pacific. In: Cronan D S, ed. Handbook of Marine Mineral Deposits. Boca Raton, Florida: CRC Press, 239–279
    Hein J R, Mizell K, Koschinsky A, et al. 2013. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geology Reviews, 51: 1–14, doi: 10.1016/j.oregeorev.2012.12.001
    Hou Xiaofan, Wang Zhenyan, Li Wenjian, et al. 2020. Mineralogy and geochemistry of ferromanganese crusts of Caroline ridge CM4 guyot in the western Pacific. Oceanologia et Limnologia Sinica (in Chinese), 51(5): 1118–1126
    Huang Wei, Hu Bangqi, Song Weiyu, et al. 2022. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge. Marine Geology & Quaternary Geology (in Chinese), 42(5): 137–148.
    Jiang Xiaodong, Sun Xiaoming, Chou Yumin, et al. 2020. Geochemistry and origins of carbonate fluorapatite in seamount Fe-Mn crusts from the Pacific Ocean. Marine Geology, 423: 106135, doi: 10.1016/j.margeo.2020.106135
    Josso P, Lusty P, Chenery S, et al. 2021. Controls on metal enrichment in ferromanganese crusts: temporal changes in oceanic metal flux or phosphatisation? Geochimica et Cosmochimica Acta, 308: 60–74
    Josso P, Pelleter E, Pourret O, et al. 2017. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements. Ore Geology Reviews, 87: 3–15, doi: 10.1016/j.oregeorev.2016.09.003
    Josso P, Parkinson I, Horstwood M, et al. 2019. Improving confidence in ferromanganese crust age models: a composite geochemical approach. Chemical Geology, 513: 108–119, doi: 10.1016/j.chemgeo.2019.03.003
    Josso P, Rushton J, Lusty P, et al. 2020. Late Cretaceous and Cenozoic paleoceanography from north-east Atlantic ferromanganese crust microstratigraphy. Marine Geology, 422: 106122, doi: 10.1016/j.margeo.2020.106122
    Khanchuk A I, Mikhailik P E, Mikhailik E V, et al. 2015. Peculiarities of the distribution of rare-earth elements and yttrium in mineral phases of the ferromanganese crusts from the Detroit Guyot (Pacific Ocean). Doklady Earth Sciences, 465(2): 1243–1247, doi: 10.1134/S1028334X15120016
    Konstantinova N, Hein J R, Mizell K, et al. 2020. Changes in sediment source areas to the Amerasia Basin, Arctic Ocean, over the past 5.5 million years based on radiogenic isotopes (Sr, Nd, Pb) of detritus from ferromanganese crusts. Marine Geology, 428: 106280, doi: 10.1016/j.margeo.2020.106280
    Konstantinova N, Son V T, Thang L A, et al. 2022. Ferromanganese crusts of the Vietnam margin, central South China Sea: composition and genesis. Marine Geology, 453: 106911, doi: 10.1016/j.margeo.2022.106911
    Koschinsky A, Halbach P. 1995. Sequential leaching of marine ferromanganese precipitates: genetic implications. Geochimica et Cosmochimica Acta, 59(24): 5113–5132, doi: 10.1016/0016-7037(95)00358-4
    Koschinsky A, Hein J R. 2003. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Marine Geology, 198(3-4): 331–351, doi: 10.1016/S0025-3227(03)00122-1
    Koschinsky A, Hein J R, Kraemer D, et al. 2020. Platinum enrichment and phase associations in marine ferromanganese crusts and nodules based on a multi-method approach. Chemical Geology, 539: 119426, doi: 10.1016/j.chemgeo.2019.119426
    Koschinsky A, Stascheit A, Bau M, et al. 1997. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochimica et Cosmochimica Acta, 61(19): 4079–4094, doi: 10.1016/S0016-7037(97)00231-7
    Li Jiangshan, Shi Xuefa, Liu Jihua, et al. 2011. Constraints of paleoceanographic environmental evolution on REEs enrichment in Co-rich crust. Journal of the Chinese Society of Rare Earths (in Chinese), 29(5): 622–629
    Liu Kai, Wang Zhenyan. 2021. Geochemistry of rare earth elements and yttrium in ferromanganese crusts from Kocebu Guyot in the Western Pacific. Marine Geology & Quaternary Geology (in Chinese), 41(1): 210–222
    Lusty P A J, Hein J R, Josso P. 2018. Formation and occurrence of ferromanganese crusts: earth's storehouse for critical metals. Elements, 14(5): 313–318, doi: 10.2138/gselements.14.5.313
    Marino E, González F J, Kuhn T, et al. 2019. Hydrogenetic, diagenetic and hydrothermal processes forming ferromanganese crusts in the Canary Island Seamounts and their influence in the metal recovery rate with hydrometallurgical methods. Minerals, 9(7): 439, doi: 10.3390/min9070439
    Marino E, González F J, Somoza L, et al. 2017. Strategic and rare elements in Cretaceous-Cenozoic cobalt-rich ferromanganese crusts from seamounts in the Canary Island Seamount Province (northeastern tropical Atlantic). Ore Geology Reviews, 87: 41–61, doi: 10.1016/j.oregeorev.2016.10.005
    Mikhailik P E, Mikhailik E V, Zarubina N V, et al. 2017. Distribution of rare-earth elements and yttrium in hydrothermal sedimentary ferromanganese crusts of the Sea of Japan (from phase analysis results). Russian Geology and Geophysics, 58(12): 1530–1542, doi: 10.1016/j.rgg.2017.11.013
    Mohwinkel D, Kleint C, Koschinsky A. 2014. Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores. Applied Geochemistry, 43: 13–21, doi: 10.1016/j.apgeochem.2014.01.010
    Nath B N, Roelandts I, Sudhakar M, et al. 1994. Cerium anomaly variations in ferro-manganese nodules and crusts from the Indian Ocean. Marine Geology, 120(3-4): 385–400, doi: 10.1016/0025-3227(94)90069-8
    Nishi K, Usui A, Nakasato Y, et al. 2017. Formation age of the dual structure and environmental change recorded in hydrogenetic ferromanganese crusts from Northwest and Central Pacific seamounts. Ore Geology Reviews, 87: 62–70, doi: 10.1016/j.oregeorev.2016.09.004
    Pan Jiahua, De Carlo E H, Yang Yi, et al. 2005. Effect of phosphatization on element concentration of cobalt-rich ferromanganese crusts. Acta Geoscientia Sinica (English Edition), 79(3): 349–355, doi: 10.1111/j.1755-6724.2005.tb00900.x
    Pan Jiahua, Liu Shuqin, DeCarlo E. 2002. The effects of marine phospharization on element concentration of cobalt-rich crusts. Acta Geoscientia Sinica (in Chinese), 23(5): 403–407
    Pelleter E, Fouquet Y, Etoubleau J, et al. 2017. Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and Futuna back-arc environment (SW Pacific). Ore Geology Reviews, 87: 126–146, doi: 10.1016/j.oregeorev.2016.09.014
    Ren Jiangbo, He Gaowen, Yao Huiqiang, et al. 2016. Geochemistry and significance of REE and PGE of the cobalt-rich crusts from west Pacific Ocean seamounts. Earth Science (in Chinese), 41(10): 1745–1757
    Ren Jiangbo, He Gaowen, Yao Huiqiang, et al. 2017. The effects of phosphatization on the REY of Co-rich Fe-Mn crusts. Marine Geology & Quaternary Geology (in Chinese), 37(2): 33–43
    Ren Xiangwen, Liu Jihua, Shi Xuefa, et al. 2011b. Genesis and ore-forming stages of Co-rich ferromanganese crusts from Seamount M of Magellan Seamounts: evidence from geochemistry and Co chronology. Marine Geology & Quaternary Geology (in Chinese), 31(6): 65–74
    Ren Xiangwen, Shi Xuefa, Zhu Aimei, et al. 2011a. Existing phase of rare earth elements in Co-rich Fe-Mn crusts from seamount MK of Magellan seamount cluster. Journal of Jilin University (Earth Science Edition) (in Chinese), 41(3): 707–714
    Sousa I M C, Santos R V, Koschinsky A, et al. 2021. Mineralogy and chemical composition of ferromanganese crusts from the Cruzeiro do Sul Lineament-Rio Grande Rise, South Atlantic. Journal of South American Earth Sciences, 108: 103207, doi: 10.1016/j.jsames.2021.103207
    Surya P L, Durbar R, Nagender N B, et al. 2020. Anomalous phase association of REE in ferromanganese crusts from Indian mid-oceanic ridges: evidence for large scale dispersion of hydrothermal iron. Chemical Geology, 549: 119679, doi: 10.1016/j.chemgeo.2020.119679
    Usui A, Nishi K, Sato H, et al. 2017. Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800–5500 m. Ore Geology Reviews, 87: 71–87, doi: 10.1016/j.oregeorev.2016.09.032
    Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua, et al. 1989. Rare Earth Elements Geochemistry (in Chinese). Beijing: Science Press, 1–535
    Xu Zhaokai, Li Anchun, Yu Xinke, et al. 2008. Elemental occurrence Phases of the new-type ferromanganese crusts from the East Philippine Sea. Earth Science-Journal of China University of Geosciences (in Chinese), 33(3): 329–336, doi: 10.3799/dqkx.2008.043
    Zhong Yi, Chen Zhong, González F J, et al. 2017. Composition and genesis of ferromanganese deposits from the northern South China Sea. Journal of Asian Earth Sciences, 138: 110–128, doi: 10.1016/j.jseaes.2017.02.015
    Zhou Jiao, Cai Pengjie, Yang Chupeng, et al. 2022. Geochemical characteristics and genesis of ferromanganese nodules and crusts from the Central Rift Seamounts Group of the West Philippine Sea. Ore Geology Reviews, 145: 104923, doi: 10.1016/j.oregeorev.2022.104923
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (37) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return