Citation: | Lian He, Senwen Huang, Fengming Hui, Xiao Cheng. An improved algorithm for retrieving thin sea ice thickness in the Arctic Ocean from SMOS and SMAP L-band radiometer data[J]. Acta Oceanologica Sinica, 2024, 43(3): 127-138. doi: 10.1007/s13131-023-2280-9 |
Backus G E, Gilbert J F. 1967. Numerical applications of a formalism for geophysical inverse problems. Geophysical Journal International, 13(1–3): 247–276, doi: 10.1111/j.1365-246X.1967.tb02159.x
|
Belter H J, Janout M A, Krumpen T, et al. 2019. Daily mean sea ice draft from moored upward-looking sonars in the Laptev Sea between 2013 and 2015. PANGAEA, doi: 10.1594/PANGAEA.899275 [2019/2023-09-01]
|
Bilello M A. 1961. Formation, growth, and decay of sea-ice in the Canadian Arctic Archipelago. Arctic, 14(1): 2–24, doi: 10.14430/ARCTIC3658
|
Cavalieri D J. 1994. A microwave technique for mapping thin sea ice. Journal of Geophysical Research: Oceans, 99(C6): 12561–12572, doi: 10.1029/94JC00707
|
Chaubell J, Chan S, Dunbar R S, et al. 2020. SMAP enhanced L1C radiometer half-orbit 9 km EASE-Grid brightness temperatures, version 3. Boulder, Colorado, USA: NASA National Snow and Ice Data Center, doi: 10.5067/XB8K63YM4U8O, https://nsidc.org/data/spl1ctb_e/versions/3 [2021/2023-09-01]
|
Chi J, Kim H C. 2021. Retrieval of daily sea ice thickness from AMSR2 passive microwave data using ensemble convolutional neural networks. GIScience & Remote Sensing, 58(6): 812–830, doi: 10.1080/15481603.2021.1943213
|
Corbella I, Torres F, Duffo N, et al. 2011. MIRAS calibration and performance: results from the SMOS in-orbit commissioning phase. IEEE Transactions on Geoscience and Remote Sensing, 49(9): 3147–3155, doi: 10.1109/TGRS.2010.2102769
|
Entekhabi D, Njoku E G, O’Neill P E, et al. 2010. The Soil Moisture Active Passive (SMAP) mission. Proceedings of the IEEE, 98(5): 704–716, doi: 10.1109/JPROC.2010.2043918
|
Fukamachi Y, Simizu D, Ohshima K I, et al. 2017. Sea-ice thickness in the coastal northeastern Chukchi Sea from moored ice-profiling sonar. Journal of Glaciology, 63(241): 888–898, doi: 10.1017/jog.2017.56
|
Gupta M, Gabarro C, Turiel A, et al. 2019. On the retrieval of sea-ice thickness using SMOS polarization differences. Journal of Glaciology, 65(251): 481–493, doi: 10.1017/jog.2019.26
|
Haas C, Casey A, Lensu M. 2021. Safewin 2011 airborne EM sea ice thickness measurements in the Baltic Sea. PANGAEA, doi: 10.1594/PANGAEA.930545, https://doi.pangaea.de/10.1594/PANGAEA.930545 [2021/2023-09-01]
|
Hendricks S, Steinhage D, Helm V, et al. 2014. Final report: technical support for the 2014 SMOSice Campaign in SE Svalbard. Bremerhaven, Germany: Alfred Wegener Institute für Polar und Meeresforschung
|
Huntemann M, Heygster G, Kaleschke L, et al. 2014. Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations. The Cryosphere, 8(2): 439–451, doi: 10.5194/tc-8-439-2014
|
Ivanova N, Pedersen L T, Tonboe R T, et al. 2015. Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations. The Cryosphere, 9(5): 1797–1817, doi: 10.5194/tc-9-1797-2015
|
Iwamoto K, Ohshima K I, Tamura T, et al. 2013. Estimation of thin ice thickness from AMSR-E data in the Chukchi Sea. International Journal of Remote Sensing, 34(2): 468–489, doi: 10.1080/01431161.2012.712229
|
Kaleschke L, Lüpkes C, Vihma T, et al. 2001. SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Canadian Journal of Remote Sensing, 27(5): 526–537, doi: 10.1080/07038992.2001.10854892
|
Kaleschke L, Maaß N, Haas C, et al. 2010. A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice. The Cryosphere, 4(4): 583–592, doi: 10.5194/tc-4-583-2010
|
Kaleschke L, Tian-Kunze X, Maaß N, et al. 2012. Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period. Geophysical Research Letters, 39(5): L05501, doi: 10.1029/2012GL050916
|
Kaleschke L, Tian-Kunze X, Maaß N, et al. 2016. SMOS sea ice product: operational application and validation in the Barents Sea marginal ice zone. Remote Sensing of Environment, 180: 264–273, doi: 10.1016/j.rse.2016.03.009
|
Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
|
Kashiwase H, Ohshima K I, Fukamachi Y, et al. 2019. Evaluation of AMSR-E thin ice thickness algorithm from a mooring-based observation: how can the satellite observe a sea ice field with nonuniform thickness distribution?. Journal of Atmospheric and Oceanic Technology, 36(8): 1623–1641, doi: 10.1175/JTECH-D-18-0218.1
|
Kerr Y H, Waldteufel P, Wigneron J P, et al. 2001. Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience and Remote Sensing, 39(8): 1729–1735, doi: 10.1109/36.942551
|
Kim J M, Sohn B J, Lee S M, et al. 2020. Differences between ICESat and CryoSat-2 sea ice thicknesses over the Arctic: consequences for analyzing the ice volume trend. Journal of Geophysical Research: Atmospheres, 125(22): e2020JD033103, doi: 10.1029/2020JD033103
|
Kim J M, Sohn B J, Lee S M, et al. 2022. The estimation of the total freeboard of Arctic sea ice in winter using passive microwave satellite measurements. Journal of Atmospheric and Oceanic Technology, 39(10): 1611–1627, doi: 10.1175/JTECH-D-21-0105.1
|
Krishfield R, Proshutinsky A. 2006. BGOS ULS Data Processing Procedure. Woods Hole, MA, USA: Woods Hole Oceanographic Institute
|
Krishfield R A, Proshutinsky A, Tateyama K, et al. 2014. Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle. Journal of Geophysical Research: Oceans, 119(2): 1271–1305, doi: 10.1002/2013JC008999
|
Kwok R. 2018. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environmental Research Letters, 13(10): 105005, doi: 10.1088/1748-9326/aae3ec
|
Kwok R, Cunningham G F. 2008. ICESat over Arctic sea ice: estimation of snow depth and ice thickness. Journal of Geophysical Research: Oceans, 113(C8): C08010, doi: 10.1029/2008JC004753
|
Lavergne T, Eastwood S, Teffah Z, et al. 2010. Sea ice motion from low-resolution satellite sensors: an alternative method and its validation in the Arctic. Journal of Geophysical Research: Oceans, 115(C10): C10032, doi: 10.1029/2009JC005958
|
Laxon S, Peacock N, Smith D. 2003. High interannual variability of sea ice thickness in the Arctic region. Nature, 425(6961): 947–950, doi: 10.1038/nature02050
|
Lee S M, Meier W N, Sohn B J, et al. 2021. Estimation of Arctic basin-scale sea ice thickness from satellite passive microwave measurements. IEEE Transactions on Geoscience and Remote Sensing, 59(7): 5841–5850, doi: 10.1109/TGRS.2020.3026949
|
Liu Yinghui, Key J R, Wang Xuanji, et al. 2020. Multidecadal Arctic sea ice thickness and volume derived from ice age. The Cryosphere, 14(4): 1325–1345, doi: 10.5194/tc-14-1325-2020
|
Maaß N, Kaleschke L, Tian-Kunze X, et al. 2013. Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data. The Cryosphere, 7(6): 1971–1989, doi: 10.5194/tc-7-1971-2013
|
Mäkynen M, Similä M. 2019. Thin ice detection in the Barents and Kara Seas using AMSR2 high-frequency radiometer data. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 7418–7437, doi: 10.1109/TGRS.2019.2913283
|
Mäkynen M, Similä M. 2022. AMSR2 thin ice detection algorithm for the Arctic winter conditions. IEEE Transactions on Geoscience and Remote Sensing, 60: 4303718, doi: 10.1109/TGRS.2022.3142966
|
Martin S, Drucker R, Kwok R, et al. 2004. Estimation of the thin ice thickness and heat flux for the Chukchi Sea Alaskan coast polynya from Special Sensor Microwave/Imager data, 1990–2001. Journal of Geophysical Research: Oceans, 109(C10): C10012, doi: 10.1029/2004JC002428
|
Martin S, Drucker R, Kwok R, et al. 2005. Improvements in the estimates of ice thickness and production in the Chukchi Sea polynyas derived from AMSR-E. Geophysical Research Letters, 32(5): L05505, doi: 10.1029/2004GL022013
|
Maslanik J, Stroeve J, Fowler C, et al. 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters, 38(13): L13502, doi: 10.1029/2011GL047735
|
Maykut G A. 1978. Energy exchange over young sea ice in the central Arctic. Journal of Geophysical Research: Oceans, 83(C7): 3646–3658, doi: 10.1029/JC083iC07p03646
|
McMullan K D, Brown M A, Martin-Neira M, et al. 2008. SMOS: the payload. IEEE Transactions on Geoscience and Remote Sensing, 46(3): 594–605, doi: 10.1109/TGRS.2007.914809
|
Meier W N, Hovelsrud G K, van Oort B E H, et al. 2014. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Reviews of Geophysics, 52(3): 185–217, doi: 10.1002/2013RG000431
|
Menashi J D, St Germain K M, Swift C T, et al. 1993. Low-frequency passive-microwave observations of sea ice in the Weddell Sea. Journal of Geophysical Research: Oceans, 98(C12): 22569–22577, doi: 10.1029/93JC02058
|
Naoki K, Ukita J, Nishio F, et al. 2008. Thin sea ice thickness as inferred from passive microwave and in situ observations. Journal of Geophysical Research: Oceans, 113(C2): C02S16, doi: 10.1029/2007JC004270
|
Paţilea C, Heygster G, Huntemann M, et al. 2019. Combined SMAP–SMOS thin sea ice thickness retrieval. The Cryosphere, 13(2): 675–691, doi: 10.5194/tc-13-675-2019
|
Peng Jinzheng, Misra S, Piepmeier J R, et al. 2019. Soil Moisture Active/Passive (SMAP) L-Band microwave radiometer post-launch calibration upgrade. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(6): 1647–1657, doi: 10.1109/JSTARS.2019.2902492
|
Petráš I, Bednárová D. 2010. Total least squares approach to modeling: a Matlab toolbox. Acta Montanistica Slovaca, 15(2): 158–170
|
Pfaffling A, Haas C, Reid J E. 2007. Direct helicopter EM—Sea-ice thickness inversion assessed with synthetic and field data. Geophysics, 72(4): F127–F137, doi: 10.1190/1.2732551
|
Piepmeier J R, Focardi P, Horgan K A, et al. 2017. SMAP L-Band microwave radiometer: instrument design and first year on orbit. IEEE Transactions on Geoscience and Remote Sensing, 55(4): 1954–1966, doi: 10.1109/TGRS.2016.2631978
|
Reid J E, Pfaffling A, Vrbancich J. 2006. Airborne electromagnetic footprints in 1D earths. Geophysics, 71(2): G63–G72, doi: 10.1190/1.2187756
|
Ricker R, Hendricks S, Kaleschke L, et al. 2017. A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. The Cryosphere, 11(4): 1607–1623, doi: 10.5194/tc-11-1607-2017
|
Sánchez-Gámez P, Gabarro C, Turiel A, et al. 2020. Assessment with controlled in-situ data of the dependence of L-Band radiometry on sea-ice thickness. Remote Sensing, 12(4): 650, doi: 10.3390/rs12040650
|
Scott K A, Buehner M, Carrieres T. 2014. An assessment of sea-ice thickness along the Labrador Coast from AMSR-E and MODIS data for operational data assimilation. IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2726–2737, doi: 10.1109/TGRS.2013.2265091
|
Singh R K, Oza S R, Vyas N K, et al. 2011. Estimation of thin ice thickness from the Advanced Microwave Scanning Radiometer-EOS for coastal polynyas in the Chukchi and Beaufort Seas. IEEE Transactions on Geoscience and Remote Sensing, 49(8): 2993–2998, doi: 10.1109/TGRS.2011.2123101
|
Soriot C, Prigent C, Jimenez C, et al. 2023. Arctic sea ice thickness estimation from passive microwave satellite observations between 1.4 and 36 GHz. Earth and Space Science, 10(2): e2022EA002542, doi: 10.1029/2022EA002542
|
Spreen G, Kaleschke L, Heygster G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research: Oceans, 113(C2): C02S03, doi: 10.1029/2005JC003384
|
Tamura T, Ohshima K I. 2011. Mapping of sea ice production in the Arctic coastal polynyas. Journal of Geophysical Research: Oceans, 116(C7): C07030, doi: 10.1029/2010JC006586
|
Tian-Kunze X, Kaleschke L, Maaß N, et al. 2014. SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification. The Cryosphere, 8(3): 997–1018, doi: 10.5194/tc-8-997-2014
|
Tietsche S, Alonso-Balmaseda M, Rosnay P, et al. 2018. Thin Arctic sea ice in L-band observations and an ocean reanalysis. The Cryosphere, 12(6): 2051–2072, doi: 10.5194/tc-12-2051-2018
|
Wang Xuanji, Key J R, Liu Yinghui. 2010. A thermodynamic model for estimating sea and lake ice thickness with optical satellite data. Journal of Geophysical Research: Oceans, 115(C12): C12035, doi: 10.1029/2009JC005857
|
Yoshizawa E, Shimada K, Cho K H. 2018. Algorithm for flat first-year ice draft using AMSR2 data in the Arctic Ocean. Journal of Atmospheric and Oceanic Technology, 35(11): 2147–2157, doi: 10.1175/JTECH-D-18-0034.1
|
Yu Youran, Rothrock D A. 1996. Thin ice thickness from satellite thermal imagery. Journal of Geophysical Research: Oceans, 101(C11): 25753–25766, doi: 10.1029/96JC02242
|