Volume 43 Issue 5
May  2024
Turn off MathJax
Article Contents
Bowen Sun, Shuchang Xu, Zhankun Wang, Yujie Feng, Baofu Li. Spatiotemporal features and vertical structures of four types of mesoscale eddies in the Kuroshio Extension region[J]. Acta Oceanologica Sinica, 2024, 43(5): 30-40. doi: 10.1007/s13131-024-2323-x
Citation: Bowen Sun, Shuchang Xu, Zhankun Wang, Yujie Feng, Baofu Li. Spatiotemporal features and vertical structures of four types of mesoscale eddies in the Kuroshio Extension region[J]. Acta Oceanologica Sinica, 2024, 43(5): 30-40. doi: 10.1007/s13131-024-2323-x

Spatiotemporal features and vertical structures of four types of mesoscale eddies in the Kuroshio Extension region

doi: 10.1007/s13131-024-2323-x
Funds:  The Natural Science Foundation of Shandong Province under contract No. ZR2021YQ28; the Taishan Scholars Project of Shandong Province under contract No. tsqn202306182.
More Information
  • Corresponding author: libf@qfnu.edu.cn
  • Received Date: 2023-12-01
  • Accepted Date: 2024-02-29
  • Available Online: 2024-05-13
  • Publish Date: 2024-05-30
  • Except for conventional mesoscale eddies, there are also abundant warm cyclonic eddies (WCEs) and cold anticyclonic eddies (CAEs) in the global ocean. Based on the global mesoscale eddy trajectory atlas product, satellite altimetric and remote sensing datasets, and three-dimensional temperature/salinity dataset, spatiotemporal features of WCEs and CAEs are compared with traditional cold cyclonic eddies and warm anticyclonic eddies in the Kuroshio Extension (KE; 28°−43°N, 140°−170°E) region. Characteristics of abnormal eddies like radius, amplitude, eddy kinetic energy, and proportion in all eddies behave in significant asymmetry on the north and south sides of the KE jet. Unlike eddies in the general sense, temporal feature analysis reveals that it is more favorable to the formation and maintenance of WCEs and CAEs in summer and autumn, while winter is the opposite. The spatiotemporal variation of abnormal eddies is likely because the marine environment varying with time and space. Statistically, proportion of abnormal eddies increases rapidly in decaying stage during the whole eddy lifespan, resulting in smaller average radius, amplitude, sea surface temperature anomaly and sea surface height anomaly compared to normal ones. The three-dimensional composite structures for four types of eddies expose that the difference between abnormal and conventional eddies is not just limited to the sea surface, but also exists within the water below the sea surface. Vertical structures also indicate that the anomalous temperature signal is confined in the water from the sea surface to layers at about 30 m in the KE region.
  • loading
  • Castellani M. 2006. Identification of eddies from sea surface temperature maps with neural networks. International Journal of Remote Sensing, 27(8): 1601–1618, doi: 10.1080/014311605004 62170
    Chaigneau A, Le Texier M, Eldin G, et al. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research: Oceans, 116(C11): C11025, doi: 10.1029/2011JC007134
    D’Alimonte D. 2009. Detection of mesoscale eddy-related structures through ISO-SST patterns. IEEE Geoscience and Remote Sensing Letters, 6(2): 189–193, doi: 10.1109/LGRS.2008.2009550
    Desbiolles F, Alberti M, Hamouda M E, et al. 2021. Links between sea surface temperature structures, clouds and rainfall: study case of the Mediterranean Sea. Geophysical Research Letters, 48(10): e2020GL091839, doi: 10.1029/2020GL091839
    Dilmahamod A F, Aguiar-González B, Penven P, et al. 2018. SIDDIES corridor: A major east-west pathway of long-lived surface and subsurface eddies crossing the subtropical South Indian Ocean. Journal of Geophysical Research: Oceans, 123(8): 5406–5425, doi: 10.1029/2018JC013828
    Dong D, Brandt D, Chang P, et al. 2017. Mesoscale eddies in the northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports. Journal of Geophysical Research: Oceans, 122(12): 9795–9813, doi: 10.1002/2017JC013303
    Everett J D, Baird M E, Oke P R, et al. 2012. An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea. Geophysical Research Letters, 39(16): L16608, doi: 10.1029/2012GL053091
    Fernandes A, Nascimento S. 2006. Automatic water eddy detection in SST maps using random ellipse fitting and vectorial fields for image segmentation. In: Proceedings of the 9th International Conference on Discovery Science. Barcelona, Spain: Springer, 77–88, doi: 10.1007/118933318_11
    Frenger I, Münnich M, Gruber N, et al. 2015. Southern Ocean eddy phenomenology. Journal of Geophysical Research: Oceans, 120(11): 7413–7449, doi: 10.1002/2015JC011047
    Gaube P, Chelton D B, Samelson R M, et al. 2015. Satellite observations of mesoscale eddy-induced Ekman pumping. Journal of Physical Oceanography, 45(1): 104–132, doi: 10.1175/JPO-D-14-0032.1
    Itoh S, Yasuda I. 2010a. Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the subarctic North Pacific. Journal of Physical Oceanography, 40(12): 2624–2642, doi: 10.1175/2010JPO4475.1
    Itoh S, Yasuda I. 2010b. Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension region detected from the distribution of the sea surface height anomaly. Journal of Physical Oceanography, 40(5): 1018–1034, doi: 10.1175/2009JPO4265.1
    Ji Jinlin, Dong Changming, Zhang Biao, et al. 2017. An oceanic eddy statistical comparison using multiple observational data in the Kuroshio Extension region. Acta Oceanologica Sinica, 36(3): 1–7, doi: 10.1007/s13131-016-0882-1
    Ji Jinlin, Dong Changming, Zhang Biao, et al. 2018. Oceanic eddy characteristics and generation mechanisms in the Kuroshio Extension region. Journal of Geophysical Research: Oceans, 123(11): 8548–8567, doi: 10.1029/2018JC014196
    Kouketsu S, Kaneko H, Okunishi T, et al. 2016. Mesoscale eddy effects on temporal variability of surface chlorophyll a in the Kuroshio Extension. Journal of Oceanography, 72(3): 439–451, doi: 10.1007/s10872-015-0286-4
    Liu Yingjie, Zheng Quanan, Li Xiaofeng. 2021. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning. Geophysical Research Letters, 48(17): e2021GL094772, doi: 10.1029/2021GL094772
    Lv Mingkun, Wang Fan, Li Yuanlong, et al. 2022. Structure of sea surface temperature anomaly induced by mesoscale eddies in the North Pacific Ocean. Journal of Geophysical Research: Oceans, 127(3): e2021JC017581, doi: 10.1029/2021JC017581
    Ma Jing, Xu Haiming, Dong Changming, et al. 2015. Atmospheric responses to oceanic eddies in the Kuroshio Extension region. Journal of Geophysical Research: Atmospheres, 120(13): 6313–6330, doi: 10.1002/2014JD022930
    Mathis J T, Pickart R S, Hansell D A, et al. 2007. Eddy transport of organic carbon and nutrients from the Chukchi shelf: impact on the upper halocline of the western Arctic Ocean. Journal of Geophysical Research: Oceans, 112(C5): C05011, doi: 10.1029/2006JC003899
    Ni Qinbiao, Zhai Xiaoming, Jiang Xuemin, et al. 2021. Abundant cold anticyclonic eddies and warm cyclonic eddies in the global ocean. Journal of Physical Oceanography, 51(9): 2793–2806, doi: 10.1175/JPO-D-21-0010.1
    Ni Qinbiao, Zhai Xiaoming, Yang Zhibin, et al. 2023. Generation of cold anticyclonic eddies and warm cyclonic eddies in the tropical oceans. Journal of Physical Oceanography, 53(6): 1485–1498, doi: 10.1175/JPO-D-22-0197.1
    Pegliasco C, Delepoulle A, Mason E, et al. 2022. META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry. Earth System Science Data, 14(3): 1087–1107, doi: 10.5194/essd-14-1087-2022
    Qiu Bo, Chen Shuiming, Schneider N. 2017. Dynamical links between the decadal variability of the Oyashio and Kuroshio extensions. Journal of Climate, 30(23): 9591–9605, doi: 10.1175/JCLI-D-17-0397.1
    Renault L, Masson S, Oerder V, et al. 2019. Disentangling the mesoscale ocean-atmosphere interactions. Journal of Geophysical Research: Oceans, 124(3): 2164–2178, doi: 10.1029/2018JC01 4628
    Shan Xuan, Jing Zhao, Gan Bolan, et al. 2020a. Surface heat flux induced by mesoscale eddies cools the Kuroshio-Oyashio Extension region. Geophysical Research Letters, 47(1): e2019GL086050, doi: 10.1029/2019GL086050
    Shan Xuan, Jing Zhao, Sun Bingrong, et al. 2020b. Impacts of ocean current-atmosphere interactions on mesoscale eddy energetics in the Kuroshio Extension region. Geoscience Letters, 7(1): 3, doi: 10.1186/s40562-020-00152-w
    Sun Wenjin, Dong Changming, Tan Wei, et al. 2019a. Statistical characteristics of cyclonic warm-core eddies and anticyclonic cold-core eddies in the North Pacific based on remote sensing data. Remote Sensing, 11(2): 208, doi: 10.3390/rs11020208
    Sun Shuangwen, Fang Yue, Zu Yongcan, et al. 2020. Seasonal characteristics of mesoscale coupling between the sea surface temperature and wind speed in the South China Sea. Journal of Climate, 33(2): 625–638, doi: 10.1175/JCLI-D-19-0392.1
    Sun Bowen, Li Baofu, Yan Jingyu, et al. 2022. Seasonal variation of atmospheric coupling with oceanic mesoscale eddies in the North Pacific Subtropical Countercurrent. Acta Oceanologica Sinica, 41(10): 109–118, doi: 10.1007/s13131-022-2022-4
    Sun Wenjin, Liu Yu, Chen Gengxin, et al. 2021. Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea. Acta Oceanologica Sinica, 40(10): 17–29, doi: 10.1007/s13131-021-1770-x
    Sun Bowen, Liu Chuanyu, Wang Fan. 2019b. Global meridional eddy heat transport inferred from Argo and altimetry observations. Scientific Reports, 9(1): 1345, doi: 10.1038/s41598-018-38069-2
    Xu Quanqian, Xu Haiming, Ma Jing. 2018. Air-sea relationship associated with mesoscale oceanic eddies over the subtropical North Pacific in summer. Chinese Journal of Atmospheric Sciences (in Chinese), 42(6): 1191–1207, doi: 10.3878/j.issn.1006-9895.1711.17180
    Yang Haiyuan, Qiu Bo, Chang Ping, et al. 2018. Decadal variability of eddy characteristics and energetics in the Kuroshio Extension: Unstable versus stable states. Journal of Geophysical Research: Oceans, 123(9): 6653–6669, doi: 10.1029/2018JC014081
    Yang Guang, Yu Weidong, Yuan Yeli, et al. 2015. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 120(10): 6733–6750, doi: 10.1002/2015JC 011130
    Yang Guangbing, Zheng Quanan, Xiong Xuejun. 2023. Subthermocline eddies carrying the Indonesian Throughflow water observed in the southeastern tropical Indian Ocean. Acta Oceanologica Sinica, 42(5): 1–13, doi: 10.1007/s13131-022-2085-2
    Yao Hengkai, Ma Chao, Jing Zhao, et al. 2023. On the vertical structure of mesoscale eddies in the Kuroshio-Oyashio Extension. Geophysical Research Letters, 50(24): e2023GL105642, doi: 10.1029/2023GL105642
    Yu Fangjie, Wang Zeyuan, Liu Shuai, et al. 2021. Inversion of the three-dimensional temperature structure of mesoscale eddies in the Northwest Pacific based on deep learning. Acta Oceanologica Sinica, 40(10): 176–186, doi: 10.1007/s13131-021-1841-z
    Zu Yongcan, Sun Shuangwen, Zhao Wei, et al. 2019. Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea. Acta Oceanologica Sinica, 38(4): 29–38, doi: 10.1007/s13131-018-1222-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (372) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return