Volume 43 Issue 5
May  2024
Turn off MathJax
Article Contents
Hao Zhang, Chenqing Fan, Lina Sun, Junmin Meng. Study of the ability of SWOT to detect sea surface height changes caused by internal solitary waves[J]. Acta Oceanologica Sinica, 2024, 43(5): 54-64. doi: 10.1007/s13131-024-2324-9
Citation: Hao Zhang, Chenqing Fan, Lina Sun, Junmin Meng. Study of the ability of SWOT to detect sea surface height changes caused by internal solitary waves[J]. Acta Oceanologica Sinica, 2024, 43(5): 54-64. doi: 10.1007/s13131-024-2324-9

Study of the ability of SWOT to detect sea surface height changes caused by internal solitary waves

doi: 10.1007/s13131-024-2324-9
Funds:  The National Natural Science Foundation of China under contract Nos U2006207 and 42006164.
More Information
  • Corresponding author: mengjm@fio.org.cn
  • Received Date: 2023-12-12
  • Accepted Date: 2024-03-15
  • Publish Date: 2024-05-30
  • Surface Water and Ocean Topography (SWOT) is a next-generation radar altimeter that offers high resolution, wide swath, imaging capabilities. It has provided free public data worldwide since December 2023. This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer (KaRIn) and Nadir altimeter (NALT), which are carried out by SWOT for internal solitary waves (ISWs), and to gather other remote sensing images to validate SWOT observations. KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs. However, its swath width does not completely cover the entire wave packet, and the resolution of L2/L3 level products (about 2 km) cannot be used to identify ISWs with smaller wavelengths. Additionally, significant wave height (SWH) images exhibit blocky structures that are not suitable for ISW studies; sea surface height anomaly (SSHA) images display systematic left-right banding. We optimize this imbalance using detrending methods; however, more precise treatment should commence with L1-level data. Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm. NALTs disturbed by ISWs record unusually elevated SWH and SSHA values, rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms. For the normalized radar cross section, Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface, making them more suitable for ISW detection. In conclusion, SWOT demonstrates outstanding capabilities in ISW detection, significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.
  • loading
  • Alpers W. 1985. Theory of radar imaging of internal waves. Nature, 314(6008): 245–247, doi: 10.1038/314245a0
    Armitage T W K, Kwok R. 2021. SWOT and the ice-covered polar oceans: an exploratory analysis. Advances in Space Research, 68(2): 829–842, doi: 10.1016/j.asr.2019.07.006
    Biancamaria S, Lettenmaier D P, Pavelsky T M. 2016. The SWOT mission and its capabilities for land hydrology. Surveys in Geophysics, 37(2): 307–337, doi: 10.1007/s10712-015-9346-y
    Bole J B, Ebbesmeyer C C, Romea R D. 1994. Soliton currents in the South China Sea: measurements and theoretical modeling. In: Proceedings of the 26th Annual Offshore Technology Conference. Houston, Texas: OTC, OTC–7417-MS
    Bondur V G, Serebryany A N, Zamshin V V. 2020. Registering fish shoals attracted by solitary intensive internal waves. Doklady Earth Sciences, 492(2): 471–474, doi: 10.1134/S1028334X 20060033
    Brandt P, Rubino A, Fischer J. 2002. Large-amplitude internal solitary waves in the North Equatorial Countercurrent. Journal of Physical Oceanography, 32(5): 1567–1573, doi: 10.1175/1520-0485(2002)032<1567:LAISWI>2.0.CO;2
    Chaudhary A, Agarwal N, Sharma R, et al. 2021. Nadir altimetry Vis-à-Vis swath altimetry: a study in the context of SWOT mission for the Bay of Bengal. Remote Sensing of Environment, 252: 112120, doi: 10.1016/j.rse.2020.112120
    da Silva J C B, Cerqueira A L F. 2016. A note on radar altimeter signatures of internal solitary waves in the ocean. In: Proceedings of SPIE 9999, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2016. Edinburgh: SPIE, 999902
    da Silva J C B, Santos-Ferreira A M, Rieu P, et al. 2020. Detection of internal solitary waves with conventional and advanced SAR altimetry processing methods: preliminary results. In: Proceedings of 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 3521–3524
    Dong Xiao, Zhang Yunhua, Zhai Wenshuai. 2017. Design and algorithms of the Tiangong-2 interferometric imaging radar altimeter processor. In: Proceedings of 2017 Progress in Electromagnetics Research Symposium. St. Petersburg: IEEE, 3802–3803
    Donlon C, Berruti B, Buongiorno A, et al. 2012. The global monitoring for environment and security (GMES) Sentinel-3 mission. Remote Sensing of Environment, 120: 37–57, doi: 10.1016/j.rse.2011.07.024
    Durand M, Fu L L, Lettenmaier D P, et al. 2010. The Surface Water and Ocean Topography Mission: observing terrestrial surface water and oceanic submesoscale eddies. Proceedings of the IEEE, 98(5): 766–779, doi: 10.1109/JPROC.2010.2043031
    Fu L L, Alsdorf D, Rodriguez E, et al. 2009. The SWOT (Surface Water and Ocean Topography) mission: spaceborne radar interferometry for oceanographic and hydrological applications. In: Proceedings of the OCEANOBS’09 Conference. Venice, Italy: Sustained Ocean Observations and Informa- tion for Society
    Fu L L, Ubelmann C. 2014. On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. Journal of Atmospheric and Oceanic Technology, 31(2): 560–568, doi: 10.1175/JTECH-D-13-00109.1
    Gerkema T, Zimmerman J T F. 2008. An introduction to internal waves. Lecture Notes, Texel: Royal NIOZ, 207–208, https://docslib.org/doc/4371127/an-introduction-to-internal-waves [2023-12-12]
    Gong Yankun, Xie Jieshuo, Xu Jiexin, et al. 2022. Oceanic internal solitary waves at the Indonesian submarine wreckage site. Acta Oceanologica Sinica, 41(3): 109–113, doi: 10.1007/s13131-021-1893-0
    Huang Xiaodong, Chen Zhaohui, Zhao Wei, et al. 2016. An extreme internal solitary wave event observed in the northern South China Sea. Scientific Reports, 6(1): 30041, doi: 10.1038/srep30041
    Jackson C R, da Silva J C B, Jeans G, et al. 2013. Nonlinear internal waves in synthetic aperture radar imagery. Oceanography, 26(2): 68–79
    Le Traon P Y, Nadal F, Ducet N. 1998. An improved mapping method of multisatellite altimeter data. Journal of Atmospheric and Oceanic Technology, 15(2): 522–534, doi: 10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2
    Liu Yanliang, Putchim L, Li Kuiping, et al. 2022. Late monsoon threatens coral refugia in the Andaman Sea. Environmental Research Letters, 17(3): 034038, doi: 10.1088/1748-9326/ac4a30
    Ma Zhimin, Han Guoqi. 2019. Reconstruction of the surface inshore Labrador current from SWOT sea surface height measurements. Remote Sensing, 11(11): 1264, doi: 10.3390/rs11111264
    Magalhães J M, da Silva J C B. 2017. Satellite altimetry observations of large-scale internal solitary waves. IEEE Geoscience and Remote Sensing Letters, 14(4): 534–538, doi: 10.1109/LGRS.2017.2655621
    Magalhães J M, da Silva J C B, Buijsman M C, et al. 2016. Effect of the North Equatorial Counter Current on the generation and propagation of internal solitary waves off the Amazon shelf (SAR observations). Ocean Science, 12(1): 243–255, doi: 10.5194/os-12-243-2016
    Magalhaes J M, Lapa I G, Santos-Ferreira A M, et al. 2023. Using a tandem flight configuration between Sentinel-6 and Jason-3 to compare SAR and conventional altimeters in sea surface signatures of internal solitary waves. Remote Sensing, 15(2): 392, doi: 10.3390/rs15020392
    Moore S E, Lien R C. 2007. Pilot whales follow internal solitary waves in the South China Sea. Marine Mammal Science, 23(1): 193–196, doi: 10.1111/j.1748-7692.2006.00086.x
    Morrow R, Fu L L, Ardhuin F, et al. 2019. Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) mission. Frontiers in Marine Science, 6: 232, doi: 10.3389/fmars.2019.00232
    Nerem R S, Chambers D P, Choe C, et al. 2010. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Marine Geodesy, 33(S1): 435–446
    Pineda J, Rouse S, Starczak V, et al. 2020. Response of small sharks to nonlinear internal waves. Limnology and Oceanography, 65(4): 707–716, doi: 10.1002/lno.11341
    Ray C, Martin-Puig C, Clarizia M P, et al. 2015. SAR altimeter backscattered waveform model. IEEE Transactions on Geoscience and Remote Sensing, 53(2): 911–919, doi: 10.1109/TGRS.2014.2330423
    Santos-Ferreira A M, da Silva J C B. 2020. Can we retrieve internal soliton amplitudes in the ocean with SAR altimetry? What would this be good for?. In: Proceedings of 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 3525–3528
    Santos-Ferreira A M, da Silva J C B, Magalhaes J M. 2018. SAR mode altimetry observations of internal solitary waves in the tropical ocean Part 1: case studies. Remote Sensing, 10(4): 644, doi: 10.3390/rs10040644
    Stammer D. 1997. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. Journal of Physical Oceanography, 27(8): 1743–1769, doi: 10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2
    Stiles Bryan W. 2021. KaRIn: ka-band radar interferometer on-board processor (OBP) algorithm theoretical basis document (ATBD). JPL D-79130. https://swot.jpl.nasa.gov/resources/documents/[2021-03-08/2023-11-23]
    Thibaut P, Poisson J C, Bronner E, et al. 2010. Relative performance of the MLE3 and MLE4 retracking algorithms on Jason-2 altimeter waveforms. Marine Geodesy, 33(S1): 317–335
    Wang Yuhuai, Dai Changfeng, Chen Y Y. 2007. Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophysical Research Letters, 34(18): L18609
    Yu Daocheng, Hwang C, Andersen O B, et al. 2021. Gravity recovery from SWOT altimetry using geoid height and geoid gradient. Remote Sensing of Environment, 265: 112650, doi: 10.1016/j.rse.2021.112650
    Yu Changtian, Meng Junmin, Sun Lina, et al. 2022. Study of sea surface geophysical parameter changes due to internal solitary waves using a Sentinel-3 synthetic aperture radar altimeter. Remote Sensing, 14(21): 5375, doi: 10.3390/rs14215375
    Zhang Hao, Fan Chenqing, Meng Junmin, et al. 2022. Research on internal solitary wave detection and analysis based on interferometric imaging radar altimeter onboard the Tiangong-2 space laboratory. Remote Sensing, 14(1): 174
    Zhang Yunhua, Jiang Jingshan, Zhang Hongyuan, et al. 2000. Spaceborne imaging altimeter for topographic mapping. In: Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120). Honolulu: IEEE, 2349–2351
    Zhang Yunhua, Shi Xiaojin, Wang Hongjian, et al. 2018a. Interferometric imaging radar altimeter on board Chinese Tiangong-2 space laboratory. In: Proceedings of 2018 Asia-Pacific Microwave Conference. Kyoto: IEEE, 851–853
    Zhang Meng, Wang Jing, Li Zhixin, et al. 2022. Laboratory study of the impact of the surface solitary waves created by the internal solitary waves on optical imaging. Journal of Geophysical Research: Oceans, 127(2): e2021JC017800, doi: 10.1029/2021JC017800
    Zhang Xudong, Zhang Jie, Fan Chenqing, et al. 2018b. Observations of internal waves with high sampling data of radar altimetry and MODIS images. International Journal of Remote Sensing, 39(21): 7405–7416, doi: 10.1080/01431161.2018.1470700
    Zhang Xudong, Zhang Jie, Meng Junmin, et al. 2020. Observation of internal waves with OLCI and SRAL on board Sentinel-3. Acta Oceanologica Sinica, 39(3): 56–62, doi: 10.1007/s13131-019-1510-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (50) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return