Volume 43 Issue 5
May  2024
Turn off MathJax
Article Contents
Haihan Hu, Jiechen Zhao, Jingkai Ma, Igor Bashmachnikov, Natalia Gnatiuk, Bo Xu, Fengming Hui. The sudden ocean warming and its potential influences on early-frozen landfast ice in the Prydz Bay, East Antarctica[J]. Acta Oceanologica Sinica, 2024, 43(5): 65-77. doi: 10.1007/s13131-024-2326-7
Citation: Haihan Hu, Jiechen Zhao, Jingkai Ma, Igor Bashmachnikov, Natalia Gnatiuk, Bo Xu, Fengming Hui. The sudden ocean warming and its potential influences on early-frozen landfast ice in the Prydz Bay, East Antarctica[J]. Acta Oceanologica Sinica, 2024, 43(5): 65-77. doi: 10.1007/s13131-024-2326-7

The sudden ocean warming and its potential influences on early-frozen landfast ice in the Prydz Bay, East Antarctica

doi: 10.1007/s13131-024-2326-7
Funds:  The National Natural Science Foundation of China under contract Nos 42276251, 42211530033, and 41876212; the Taishan Scholars Program.
More Information
  • The ocean conditions beneath the ice cover play a key role in understanding the sea ice mass balance in the polar regions. An integrated high-frequency ice-ocean observation system, including Acoustic Doppler Velocimeter, Conductivity-Temperature-Depth Sensor, and Sea Ice Mass Balance Array (SIMBA), was deployed in the landfast ice region close to the Chinese Zhongshan Station in Antarctica. A sudden ocean warming of 0.14℃ (p < 0.01) was observed beneath early-frozen landfast ice, from (−1.60 ± 0.03)℃ during April 16–19 to (−1.46 ± 0.07)℃ during April 20–23, 2021, which is the only significant warming event in the nearly 8-month records. The sudden ocean warming brought a double rise in oceanic heat flux, from (21.7 ± 11.1) W/m2 during April 16–19 to (44.8 ± 21.3) W/m2 during April 20–23, 2021, which shifted the original growth phase at the ice bottom, leading to a 2 cm melting, as shown from SIMBA and borehole observations. Simultaneously, the slowdown of ice bottom freezing decreased salt rejection, and the daily trend of observed ocean salinity changed from +0.02 d−1 during April 16–19, 2021 to +0.003 d−1 during April 20–23, 2021. The potential reasons are increased air temperature due to the transit cyclones and the weakened vertical ocean mixing due to the tide phase transformation from semi-diurnal to diurnal. The high-frequency observations within the ice-ocean boundary layer enhance the comprehensive investigation of the ocean’s influence on ice evolution at a daily scale.
  • loading
  • Allison I. 1981. Antarctic ice growth and oceanic heat flux. IAHS Publication, (131): 161–170
    Bigg P H. 1967. Density of water in SI units over the range 0–40 C. British Journal of Applied Physics, 18(4): 521–525, doi: 10.1088/0508-3443/18/4/315
    E Dongchen, Huang Jifeng, Zhang Shengkai. 2013. Analysis of tidal features of Zhongshan Station, East Antarctic. Geomatics and Information Science of Wuhan University (in Chinese), 38(4): 379–382,464
    Ebert E E, Schramm J L, Curry J A. 1995. Disposition of solar radiation in sea ice and the upper ocean. Journal of Geophysical Research: Oceans, 100(C8): 15965–15975, doi: 10.1029/95JC01672
    Guo Guijun, Shi Jiuxin, Gao Libao, et al. 2019. Reduced sea ice production due to upwelled oceanic heat flux in Prydz Bay, East Antarctica. Geophysical Research Letters, 46(9): 4782–4789, doi: 10.1029/2018GL081463
    Guo Guijun, Shi Jiuxin, Jiao Yutian. 2015. Temporal variability of vertical heat flux in the Makarov Basin during the ice camp observation in summer 2010. Acta Oceanologica Sinica, 34(11): 118–125, doi: 10.1007/s13131-015-0755-z
    Heil P. 2006. Atmospheric conditions and fast ice at Davis, East Antarctica: A case study. Journal of Geophysical Research: Oceans, 111(C5): C05009
    Heil P, Allison I, Lytle V I. 1996. Seasonal and interannual variations of the oceanic heat flux under a landfast Antarctic sea ice cover. Journal of Geophysical Research: Oceans, 101(C11): 25741–25752, doi: 10.1029/96JC01921
    Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049, doi: 10.1002/qj.3803
    Himmich K, Vancoppenolle M, Madec G, et al. 2023. Drivers of Antarctic sea ice advance. Nature Communications, 14: 6219, doi: 10.1038/s41467-023-41962-8
    Hu Haihan, Zhao Jiechen, Heil P, et al. 2023. Annual evolution of the ice-ocean interaction beneath landfast ice in Prydz Bay, East Antarctica. The Cryosphere, 17(6): 2231–2244, doi: 10.5194/tc-17-2231-2023
    Huang N E, Shen Z, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971): 903–995
    Kirillov S, Dmitrenko I, Babb D, et al. 2015. The effect of ocean heat flux on seasonal ice growth in Young Sound (Northeast Greenland). Journal of Geophysical Research: Oceans, 120(7): 4803–4824, doi: 10.1002/2015JC010720
    Lei Ruibo, Cheng Bin, Hoppmann M, et al. 2022. Seasonality and timing of sea ice mass balance and heat fluxes in the Arctic transpolar drift during 2019–2020. Elementa: Science of the Anthropocene, 10(1): 000089, doi: 10.1525/elementa.2021.000089
    Lei Ruibo, Li Zhijun, Cheng Bin, et al. 2010. Annual cycle of landfast sea ice in Prydz Bay, east Antarctica. Journal of Geophysical Research: Oceans, 115(C2): C02006
    Lei Ruibo, Li Na, Heil P, et al. 2014. Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean. Journal of Geophysical Research: Oceans, 119(1): 537–547, doi: 10.1002/2012JC008731
    Li Na, Lei Ruibo, Heil P, et al. 2023. Seasonal and interannual variability of the landfast ice mass balance between 2009 and 2018 in Prydz Bay, East Antarctica. The Cryosphere, 17(2): 917–937, doi: 10.5194/tc-17-917-2023
    Li Xinqing, Shokr M, Hui Fengming, et al. 2020. The spatio-temporal patterns of landfast ice in Antarctica during 2006–2011 and 2016–2017 using high-resolution SAR imagery. Remote Sensing of Environment, 242: 111736, doi: 10.1016/j.rse.2020.111736
    Lytle V I, Massom R, Bindoff N, et al. 2000. Wintertime heat flux to the underside of East Antarctic pack ice. Journal of Geophysical Research: Oceans, 105(C12): 28759–28769, doi: 10.1029/2000JC900099
    Massom R A, Giles A B, Fricker H A, et al. 2010. Examining the interaction between multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica: Another factor in ice sheet stability?. Journal of Geophysical Research: Oceans, 115(C12): C12027
    Massom R, Hill K, Barbraud C, et al. 2009. Fast ice distribution in Adélie Land, East Antarctica: Interannual variability and implications for emperor penguins Aptenodytes forsteri. Marine Ecology Progress Series, 374: 243–257, doi: 10.3354/meps07734
    Maykut G A. 1986. The surface heat and mass balance. In: Untersteiner N, ed. The Geophysics of Sea Ice. New York: Springer, 395–463
    Maykut G A, McPhee M G. 1995. Solar heating of the Arctic mixed layer. Journal of Geophysical Research: Oceans, 100(C12): 24691–24703, doi: 10.1029/95JC02554
    Maykut G A, Untersteiner N. 1971. Some results from a time-dependent thermodynamic model of sea ice. Journal of Geophysical Research, 76(6): 1550–1575., doi: 10.1029/JC076i006p01550
    McMinn A, Ashworth C, Ryan K. 2000. In situ net primary productivity of an Antarctic fast ice bottom algal community. Aquatic Microbial Ecology, 21: 177–185, doi: 10.3354/ame021177
    McPhee M G. 1979. The effect of the oceanic boundary layer on the mean drift of pack ice: Application of a simple model. Journal of Physical Oceanography, 9(2): 388–400, doi: 10.1175/1520-0485(1979)009<0388:TEOTOB>2.0.CO;2
    McPhee M G. 1992. Turbulent heat flux in the upper ocean under sea ice. Journal of Geophysical Research: Oceans, 97(C4): 5365–5379, doi: 10.1029/92JC00239
    McPhee M G. 2002. Turbulent stress at the ice/ocean interface and bottom surface hydraulic roughness during the SHEBA drift. Journal of Geophysical Research: Oceans, 107(C10): 8037
    McPhee M G, Ackley S F, Guest P, et al. 1996. The Antarctic zone flux experiment. Bulletin of the American Meteorological Society, 77(6): 1221–1232, doi: 10.1175/1520-0477(1996)077<1221:TAZFE>2.0.CO;2
    McPhee M G, Kottmeier C, Morison J H. 1999. Ocean heat flux in the central Weddell Sea during winter. Journal of Physical Oceanography, 29(6): 1166–1179, doi: 10.1175/1520-0485(1999)029<1166:OHFITC>2.0.CO;2
    McPhee M G, Morison J H, Nilsen F. 2008. Revisiting heat and salt exchange at the ice-ocean interface: Ocean flux and modeling considerations. Journal of Geophysical Research: Oceans, 113(C6): C06014
    McPhee M G, Untersteiner N. 1982. Using sea ice to measure vertical heat flux in the ocean. Journal of Geophysical Research: Oceans, 87(C3): 2071–2074, doi: 10.1029/JC087iC03p02071
    Meehl G A, Arblaster J M, Chung C T Y, et al. 2019. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nature Communications, 10: 14, doi: 10.1038/s41467-018-07865-9
    Miles B W J, Stokes C R, Jamieson S S R. 2017. Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up. The Cryosphere, 11(1): 427–442, doi: 10.5194/tc-11-427-2017
    Millero F J. 1978. Freezing point of seawater. Eighth Report of the Joint Panel on Oceanographic Tables and Standards (JPOTS). UNESCO technical papers in marine sciences. 28: 29–35
    Millero F J, Poisson A. 1981. International one-atmosphere equation of state of seawater. Deep-Sea Research Part A. Oceanographic Research Papers, 28(6): 625–629
    Moreau S, Boyd P W, Strutton P G. 2020. Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone. Nature Communications, 11: 3108, doi: 10.1038/s41467-020-16931-0
    Pan Haidong, Lv Xianqing, Wang Yingying, et al. 2018. Exploration of tidal-fluvial interaction in the Columbia River Estuary using S_TIDE. Journal of Geophysical Research: Oceans, 123(9): 6598–6619, doi: 10.1029/2018JC014146
    Parkinson C L, Cavalieri D J. 2012. Antarctic sea ice variability and trends, 1979–2010. The Cryosphere, 6(4): 871–880, doi: 10.5194/tc-6-871-2012
    Perovich D K, Elder B. 2002. Estimates of ocean heat flux at SHEBA. Geophysical Research Letters, 29(9): 58-1–58-4.
    Peterson A K, Fer I, McPhee M G, et al. 2017. Turbulent heat and momentum fluxes in the upper ocean under Arctic sea ice. Journal of Geophysical Research: Oceans, 122(2): 1439–1456, doi: 10.1002/2016JC012283
    Purdie C R, Langhorne P J, Leonard G H, et al. 2006. Growth of first-year landfast Antarctic sea ice determined from winter temperature measurements. Annals of Glaciology, 44: 170–176, doi: 10.3189/172756406781811853
    Purich A, Doddridge E W. 2023. Record low Antarctic sea ice coverage indicates a new sea ice state. Communications Earth & Environment, 4: 314
    Semtner A J. 1976. A model for the thermodynamic growth of sea ice in numerical investigations of climate. Journal of Physical Oceanography, 6(3): 379–389, doi: 10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2
    Singh H K A, Landrum L, Holland M M, et al. 2021. An overview of Antarctic sea ice in the community earth system model version 2, Part I: Analysis of the seasonal cycle in the context of sea ice thermodynamics and coupled atmosphere-ocean-ice processes. Journal of Advances in Modeling Earth Systems, 13(3): e2020MS002143, doi: 10.1029/2020MS002143
    Sirevaag A. 2009. Turbulent exchange coefficients for the ice/ocean interface in case of rapid melting. Geophysical Research Letters, 36(4): L04606
    Sirevaag A, Fer I. 2009. Early spring oceanic heat fluxes and mixing observed from drift stations north of Svalbard. Journal of Physical Oceanography, 39(12): 3049–3069, doi: 10.1175/2009JPO4172.1
    Stammerjohn S, Massom R, Rind D, et al. 2012. Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophysical Research Letters, 39(6): L06501
    Untersteiner N. 1961. On the mass and heat budget of arctic sea ice. Archiv für Meteorologie, Geophysik und Bioklimatologie Serie A, 12(2): 151–182
    Welch P. 1967. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2): 70–73, doi: 10.1109/TAU.1967.1161901
    Yang Yu, Li Zhijun, Leppäranta M, et al. 2016. Modelling the thickness of landfast sea ice in Prydz Bay, East Antarctica. Antarctic Science, 28(1): 59–70, doi: 10.1017/S0954102015000449
    Zhang Liping, Delworth T L, Yang Xiaosong, et al. 2022. The relative role of the subsurface Southern Ocean in driving negative Antarctic Sea ice extent anomalies in 2016–2021. Communications Earth & Environment, 3: 302
    Zhao Jiechen, Cheng Jingjing, Tian Zhongxiang, et al. 2022. Snow and ice thicknesses derived from Fast Ice Prediction System Version 2.0 (FIPS V2.0) in Prydz Bay, East Antarctica: comparison with in-situ observations. Big Earth Data, 6(4): 492–503, doi: 10.1080/20964471.2021.1981196
    Zhao Jiechen, Cheng Bin, Vihma T, et al. 2020. Fast Ice Prediction System (FIPS) for land-fast sea ice at Prydz Bay, East Antarctica: an operational service for CHINARE. Annals of Glaciology, 61(83): 271–283, doi: 10.1017/aog.2020.46
    Zhao Jiechen, Cheng Bin, Yang Qinghua, et al. 2017a. Observations and modelling of first-year ice growth and simultaneous second-year ice ablation in the Prydz Bay, East Antarctica. Annals of Glaciology, 58(75pt1): 59–67, doi: 10.1017/aog.2017.33
    Zhao Jiechen, Yang Qinghua, Cheng Bin, et al. 2017b. Snow and land-fast sea ice thickness derived from thermistor chain buoy in the Prydz Bay, Antarctic. Haiyang Xuebao (in Chinese), 39(11): 115–127
    Zhao Jiechen, Yang Qinghua, Cheng Bin, et al. 2019. Spatial and temporal evolution of landfast ice near Zhongshan Station, East Antarctica, over an annual cycle in 2011/2012. Acta Oceanologica Sinica, 38(5): 51–61, doi: 10.1007/s13131-018-1339-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (242) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return