Citation: | Fengxia Zhou, Shuangling Wang, Han Fang, Jiani He, Liang Ye, Zhaohai Ding, Cuiting Li, Fajin Chen, Xuan Lu, Chunqing Chen, Yafei Meng. Distribution and sources of sedimentary organic matter in different aquaculture areas of northeastern Zhanjiang Bay using stable carbon and nitrogen isotopes[J]. Acta Oceanologica Sinica, 2024, 43(6): 38-48. doi: 10.1007/s13131-024-2377-9 |
Anderson B, Zhang Li, Wang Huining, et al. 2017. Sedimentary carbon and nitrogen dynamics reveal impact of human land-use change on Kawainui Marsh, O‘ahu, Hawai‘i. Pacific Science, 71(1): 17–27, doi: 10.2984/71.1.2
|
Bouchet V M P, Sauriau P G. 2008. Influence of oyster culture practices and environmental conditions on the ecological status of intertidal mudflats in the Pertuis Charentais (SW France): A multi-index approach. Marine Pollution Bulletin, 56(11): 1898–1912, doi: 10.1016/j.marpolbul.2008.07.010
|
Bouillon S, Connolly R M, Lee S Y. 2008. Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies. Journal of Sea Research, 59(1-2): 44–58, doi: 10.1016/j.seares.2007.05.001
|
Brandes J A, Devol A H. 2002. A global marine-fixed nitrogen isotopic budget: implications for Holocene nitrogen cycling. Global Biogeochemical Cycles, 16(4): 1120
|
Chen Fajin, Huang Chao, Lao Qibin, et al. 2021a. Typhoon control of precipitation dual isotopes in southern China and its palaeoenvironmental implications. Journal of Geophysical Research: Atmospheres, 126(14): e2020JD034336, doi: 10.1029/2020JD034336
|
Chen Fajin, Lu Xuan, Song Zhiguang, et al. 2021b. Coastal currents regulate the distribution of the particulate organic matter in western Guangdong offshore waters as evidenced by carbon and nitrogen isotopes. Marine Pollution Bulletin, 172: 112856, doi: 10.1016/j.marpolbul.2021.112856
|
Cifuentes L A, Sharp J H, Fogel M L. 1988. Stable carbon and nitrogen isotope biogeochemistry in the Delaware Estuary. Limnology and Oceanography, 33(5): 1102–1115, doi: 10.4319/lo.1988.33.5.1102
|
Cole M L, Valiela I, Kroeger K D, et al. 2004. Assessment of a δ15N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems. Journal of Environmental Quality, 33(1): 124–132, doi: 10.2134/jeq2004.1240
|
Das S K, Routh J, Roychoudhury A N, et al. 2008. Elemental (C, N, H and P) and stable isotope (δ15N and δ13C) signatures in sediments from Zeekoevlei, South Africa: A record of human intervention in the lake. Journal of Paleolimnology, 39(3): 349–360, doi: 10.1007/s10933-007-9110-5
|
Franco-Nava M A, Blancheton J P, Deviller G, et al. 2004. Particulate matter dynamics and transformations in a recirculating aquaculture system: Application of stable isotope tracers in seabass rearing. Aquacultural Engineering, 31(3-4): 135–155, doi: 10.1016/j.aquaeng.2004.01.003
|
He Biyan, Dai Minhan, Huang W, et al. 2010. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions. Biogeosciences, 7(10): 3343–3362, doi: 10.5194/bg-7-3343-2010
|
Jiang Zengjie, Fang Jianguang, Mao Yuze, et al. 2009. Assessment on the sediment quality condition of cage culture area in Nansha Bay. Environmental Science and Management (in Chinese), 34(6): 159–163
|
Jiang Zengjie, Fang Jianguang, Mao Yuze, et al. 2012. Identification of aquaculture-derived organic matter in the sediment associated with coastal fish farming. Journal of Fishery Sciences of China (in Chinese), 19(2): 348–354
|
Kaiser D, Unger D, Qiu Guanglong. 2014. Particulate organic matter dynamics in coastal systems of the northern Beibu Gulf. Continental Shelf Research, 82: 99–118, doi: 10.1016/j.csr.2014.04.006
|
Ke Zhixin, Chen Danting, Liu Jiaxing, et al. 2020. The effects of anthropogenic nutrient inputs on stable carbon and nitrogen isotopes in suspended particulate organic matter in Jiaozhou Bay, China. Continental Shelf Research, 208: 104244, doi: 10.1016/j.csr.2020.104244
|
Kendall C. 1998. Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell J J, eds. Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier Science, 519–576
|
Krishnamurthy R V, Bhattacharya S K, Kusumgar S. 1986. Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa Lake sediments, India. Nature, 323(6084): 150–152, doi: 10.1038/323150a0
|
La Rosa T, Mirto S, Favaloro E, et al. 2002. Impact on the water column biogeochemistry of a Mediterranean mussel and fish farm. Water Research, 36(3): 713–721, doi: 10.1016/S0043-1354(01)00274-3
|
Lamb A L, Wilson G P, Leng M J. 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews, 75(1–4): 29–57, doi: 10.1016/j.earscirev.2005.10.003
|
Lao Qibin, Chen Fajin, Jin Guangzhe, et al. 2023a. Characteristics and mechanisms of typhoon-induced decomposition of organic matter and its implication for climate change. Journal of Geophysical Research: Biogeosciences, 128(6): e2023JG007518, doi: 10.1029/2023JG007518
|
Lao Qibin, Liu Sihai, Ling Zheng, et al. 2023b. External dynamic mechanisms controlling the periodic offshore blooms in Beibu Gulf. Journal of Geophysical Research: Oceans, 128(6): e2023JC019689, doi: 10.1029/2023JC019689
|
Lao Qibin, Lu Xuan, Chen Fajin, et al. 2023c. A comparative study on source of water masses and nutrient supply in Zhanjiang Bay during the normal summer, rainstorm, and typhoon periods: Insights from dual water isotopes. Science of the Total Environment, 903: 166853, doi: 10.1016/j.scitotenv.2023.166853
|
Lao Qibin, Wu Junhui, Chen Fajin, et al. 2022a. Increasing intrusion of high salinity water alters the mariculture activities in Zhanjiang Bay during the past two decades identified by dual water isotopes. Journal of Environmental Management, 320: 115815, doi: 10.1016/j.jenvman.2022.115815
|
Lao Qibin, Zhang Shuwen, Li Zhiyang, et al. 2022b. Quantification of the seasonal intrusion of water masses and their impact on nutrients in the Beibu Gulf using dual water isotopes. Journal of Geophysical Research: Oceans, 127(7): e2021JC018065, doi: 10.1029/2021JC018065
|
LaZerte B D. 1983. Stable carbon isotope ratios: implications for the source of sediment carbon and for phytoplankton carbon assimilation in Lake Memphremagog Quebec. Canadian Journal of Fisheries and Aquatic Sciences, 40(10): 1658–1666, doi: 10.1139/f83-192
|
Li Jiacheng, Cao Ruixue, Lao Qibin, et al. 2020. Assessing seasonal nitrate contamination by nitrate dual isotopes in a monsoon-controlled bay with intensive human activities in South China. International Journal of Environmental Research and Public Health, 17(6): 1921, doi: 10.3390/ijerph17061921
|
Liao Weisen, Hu Jianfang, Zhou Haoda, et al. 2018. Sources and distribution of sedimentary organic matter in the Beibu Gulf, China: Application of multiple proxies. Marine Chemistry, 206: 74–83, doi: 10.1016/j.marchem.2018.09.006
|
Liu Jingjing. 2019. Sources of sedimentary organic matter in and around cage fish farming of Poyang Lake using stable carbon and nitrogen isotopes (in Chinese) [dissertation]. Nanchang: Nanchang University
|
Liu Guofeng, Xu Pao, Wu Ting, et al. 2018. Present condition of aquaculture nitrogen and phosphorus environmental pollution and future development strategy. Jiangsu Journal of Agricultural Sciences (in Chinese), 34(1): 225–233
|
Liu Sai, Yang Qian, Yang Shu, et al. 2014. The long-term records of carbon burial fluxes in sediment cores of culture zones from Sanggou Bay. Haiyang Xuebao (in Chinese), 36(8): 30–38
|
Lu Xuan, Zhou Fengxia, Chen Fajin, et al. 2020. Spatial and seasonal variations of sedimentary organic matter in a subtropical bay: Implication for human interventions. International Journal of Environmental Research and Public Health, 17(4): 1362, doi: 10.3390/ijerph17041362
|
Lu Xuan, Zhou Xin, Jin Guangzhe, et al. 2022. Biological impact of Typhoon Wipha in the coastal area of western Guangdong: A comparative field observation perspective. Journal of Geophysical Research: Biogeosciences, 127(2): e2021JG006589, doi: 10.1029/2021JG006589
|
McGhie T K, Crawford C M, Mitchell I M, et al. 2000. The degradation of fish-cage waste in sediments during fallowing. Aquaculture, 187(3-4): 351–366, doi: 10.1016/S0044-8486(00)00317-3
|
Meyers P A. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5-6): 213–250, doi: 10.1016/S0146-6380(97)00049-1
|
Miyake Y, Wada E. 1971. The isotope effect on the nitrogen in biological, oxidation-reduction-reactions. Records of Oceanographic Works in Japan, 11: 1–6
|
Pan Zhe, Gao Qinfeng, Dong Shuanglin, et al. 2019. Effects of abalone (Haliotis discus hannai Ino) and kelp (Saccharina japonica) mariculture on sources, distribution, and preservation of sedimentary organic carbon in Ailian Bay, China: Identified by coupling stable isotopes (δ13C and δ15N) with C/N ratio analyses. Marine Pollution Bulletin, 141: 387–397, doi: 10.1016/j.marpolbul.2019.02.053
|
Pancost R D, Boot C S. 2004. The palaeoclimatic utility of terrestrial biomarkers in marine sediments. Marine Chemistry, 92(1-4): 239–261, doi: 10.1016/j.marchem.2004.06.029
|
Redfield A C, Ketchum B H, Rechards F A. 1963. The influence of organisms on the composition of seawater. In: Hill M N, ed. The Composition of Sea-Water, Comparative and Descriptive Oceanography. New York: Wiley Interscience, 26–27
|
Ren Lihua, Zhang Jihong, Niu Yali, et al. 2015. Stable isotope evidence for the sediment impacts on biodeposits from long-line cultured Crassostrea gigas in Sungo Bay. Marine Sciences (in Chinese), 39(11): 79–85
|
Rubio-Portillo E, Villamor A, Fernandez-Gonzalez V, et al. 2019. Exploring changes in bacterial communities to assess the influence of fish farming on marine sediments. Aquaculture, 506: 459–464, doi: 10.1016/j.aquaculture.2019.03.051
|
Sarkar A, Chakraborty P, Nath B N. 2016. Distribution and nature of sedimentary organic matter in a tropical estuary: An indicator of human intervention on environment. Marine Pollution Bulletin, 102(1): 176–186, doi: 10.1016/j.marpolbul.2015.11.013
|
Schubert C J, Calvert S E. 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Research Part I: Oceanographic Research Papers, 48(3): 789–810, doi: 10.1016/S0967-0637(00)00069-8
|
Srithongouthai S, Tada K. 2017. Impacts of organic waste from a yellowtail cage farm on surface sediment and bottom water in Shido Bay (the Seto Inland Sea, Japan). Aquaculture, 471: 140–145, doi: 10.1016/j.aquaculture.2017.01.021
|
Talbot M R, Livingstone D A. 1989. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeography, Palaeoclimatology, Palaeoecology, 70(1–3): 121–137
|
Wada E, Hattori A. 1991. Nitrogen in the Sea: Forms, Abundances, and Rate Processes. Boca Raton, FL: CRC Press
|
Wang Maolan, Lai Jianping, Hu Ketu, et al. 2014. Compositions and sources of stable organic carbon and nitrogen isotopes in surface sediments of Poyang Lake. China Environmental Science (in Chinese), 34(4): 1019–1025
|
Wang Maolan, Zhao Liyue, Wan Yangjie, et al. 2022. Tracing the organic matter source of cage culture sediments based on stable carbon and nitrogen isotopes in Poyang Lake, China. Marine Pollution Bulletin, 182: 113943, doi: 10.1016/j.marpolbul.2022.113943
|
Wu Xiaoyi, Yang Yufeng. 2011. Heavy metal (Pb, Co, Cd, Cr, Cu, Fe, Mn and Zn) concentrations in harvest-size white shrimp litopenaeus vannamei tissues from aquaculture and wild source. Journal of Food Composition and Analysis, 24(1): 62–65, doi: 10.1016/j.jfca.2010.03.030
|
Yamada Y, Yokoyama H, Ishihi Y, et al. 2003. Historical feeding analysis in fish farming based on carbon and nitrogen stable isotope ratio in sediment. Fisheries Science, 69(1): 213–215, doi: 10.1046/j.1444-2906.2003.00609.x
|
Ye Lixun, Ritz D A, Fenton G E, et al. 1991. Tracing the influence on sediments of organic waste from a salmonid farm using stable isotope analysis. Journal of Experimental Marine Biology & Ecology, 145(2): 161–174
|
Yokoyama H, Abo K, Ishihi Y. 2006. Quantifying aquaculture-derived organic matter in the sediment in and around a coastal fish farm using stable carbon and nitrogen isotope ratios. Aquaculture, 254(1-4): 411–425, doi: 10.1016/j.aquaculture.2005.10.024
|
Zhang Caixue, Lin Hongsheng, Sun Xingli. 2012. Source and distribution of organic matter in surface sediments of a typical bay in Guangdong Province, China. Journal of Tropical Oceanography (in Chinese), 31(6): 62–68
|
Zhang Ling, Yin Kedong, Wang Lu, et al. 2009. The sources and accumulation rate of sedimentary organic matter in the Pearl River Estuary and adjacent coastal area, Southern China. Estuarine, Coastal and Shelf Science, 85(2): 190–196
|
Zhou Fengxia, Gao Xuelu, Yuan Huamao, et al. 2018. The distribution and seasonal variations of sedimentary organic matter in the East China Sea shelf. Marine Pollution Bulletin, 129(1): 163–171, doi: 10.1016/j.marpolbul.2018.02.009
|
Zhou Xin, Jin Guangzhe, Li Jiacheng, et al. 2021. Effects of typhoon Mujigae on the biogeochemistry and ecology of a Semi-Enclosed Bay in the Northern South China Sea. Journal of Geophysical Research: Biogeosciences, 126(7): e2020JG006031, doi: 10.1029/2020JG006031
|
Zhuang Yanpei, Li Yangjie, Chen Ling, et al. 2023. Biogeochemical and physical controls on ammonium accumulation on the Chukchi shelf, western Arctic Ocean. Marine Environmental Research, 190: 106084, doi: 10.1016/j.marenvres.2023.106084
|