Citation: | Zhan Shen, Liping Ye, Jing Zhang, Hongmei Ma, Ruifeng Zhang. Major ions and trace metals in glacial meltwaters nearby Ny-Ålesund, Svalbard[J]. Acta Oceanologica Sinica, 2024, 43(10): 86-99. doi: 10.1007/s13131-024-2385-9 |
Aciego S M, Stevenson E I, Arendt C A. 2015. Climate versus geological controls on glacial meltwater micronutrient production in southern Greenland. Earth and Planetary Science Letters, 424: 51–58, doi: 10.1016/j.jpgl.2015.05.017
|
Bazzano A, Bertinetti S, Ardini F, et al. 2021. Potential source areas for atmospheric lead reaching Ny-Ålesund from 2010 to 2018. Atmosphere, 12(3): 388, doi: 10.3390/atmos12030388
|
Boike J, Juszak I, Lange S, et al. 2018. A 20-year record (1998–2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen). Earth System Science Data, 10(1): 355–390, doi: 10.5194/essd-10-355-2018
|
Colombo M, Brown K A, De Vera J, et al. 2019. Trace metal geochemistry of remote rivers in the Canadian Arctic Archipelago. Chemical Geology, 525: 479–491, doi: 10.1016/j.chemgeo.2019.08.006
|
Cooper R J, Wadham J L, Tranter M, et al. 2002. Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard. Journal of Hydrology, 269(3–4): 208–223, doi: 10.1016/S0022-1694(02)00279-2
|
Dallmann W K. 2015. Geoscience Atlas of Svalbard. Tromsø: Norwegian Polar Institute Press, 133-173
|
Dong Z W, Qin D H, Qin X, et al. 2017. Changes in precipitating snow chemistry with seasonality in the remote Laohugou glacier basin, western Qilian Mountains. Environmental Science and Pollution Research, 24(12): 11404–11414, doi: 10.1007/s11356-017-8778-y
|
Feng F, Li Z Q, Jin S, et al. 2012. Hydrochemical characteristics and solute dynamics of meltwater runoff of Urumqi Glacier No. 1, eastern Tianshan, northwest China. Journal of Mountain Science, 9(4): 472–482, doi: 10.1007/s11629-012-2316-7
|
Fortner S K, Lyons W B, Fountain A G, et al. 2009. Trace element and major ion concentrations and dynamics in glacier snow and melt: Eliot Glacier, Oregon Cascades. Hydrological Processes, 23(21): 2987–2996, doi: 10.1002/hyp.7418
|
Gaillardet J, Dupré B, Louvat P, et al. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1–4): 3–30, doi: 10.1016/S0009-2541(99)00031-5
|
Gerringa L J A, Alderkamp A C, van Dijken G, et al. 2020. Dissolved trace metals in the Ross Sea. Frontiers in Marine Science, 7: 577098, doi: 10.3389/fmars.2020.577098
|
Graly J A, Drever J I, Humphrey N F. 2017. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems. Global Biogeochemical Cycles, 31(4): 709–727, doi: 10.1002/2016GB005425
|
Graly J A, Humphrey N F, Landowski C M, et al. 2014. Chemical weathering under the greenland ice sheet. Geology, 42(6): 551–554, doi: 10.1130/G35370.1
|
Green W J, Stage B R, Preston A, et al. 2005. Geochemical processes in the Onyx River, Wright Valley, Antarctica: Major ions, nutrients, trace metals. Geochimica et Cosmochimica Acta, 69(4): 839–850, doi: 10.1016/j.gca.2004.08.001
|
Grosbois C, Négrel P, Fouillac C, et al. 2000. Dissolved load of the Loire River: Chemical and isotopic characterization. Chemical Geology, 170(1–4): 179–201, doi: 10.1016/S0009-2541(99)00247-8
|
Hagen J O, Kohler J, Melvold K, et al. 2003. Glaciers in Svalbard: mass balance, runoff and freshwater flux. Polar Research, 22(2): 145–159, doi: 10.3402/polar.v22i2.6452
|
Halbach K, Mikkelsen Ø, Berg T, et al. 2017. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere, 188: 567–574, doi: 10.1016/j.chemosphere.2017.09.012
|
Haldorsen S, Heim M, Van Der Ploeg M. 2011. Impacts of climate change on groundwater in permafrost areas: Case study from Svalbard, Norway. In: Treidel H, Martin-Bordes J L, Gurdak J J, eds. Climate Change Effects on Groundwater Resources. London: CRC Press, 341–356, doi: 10.1201/b11611-26
|
Hawkings J R, Skidmore M L, Wadham J L, et al. 2020. Enhanced trace element mobilization by Earth’s ice sheets. Proceedings of the National Academy of Sciences of the United States of America, 117(50): 31648–31659, doi: 10.1073/pnas.2014378117
|
Hindshaw R S, Rickli J, Leuthold J, et al. 2014. Identifying weathering sources and processes in an outlet glacier of the Greenland Ice Sheet using Ca and Sr isotope ratios. Geochimica et Cosmochimica Acta, 145: 50–71, doi: 10.1016/j.gca.2014.09.016
|
Hodson A, Tranter M, Gurnell A, et al. 2002. The hydrochemistry of Bayelva, a high Arctic proglacial stream in Svalbard. Journal of Hydrology, 257(1–4): 91–114, doi: 10.1016/S0022-1694(01)00543-1
|
Hodson A, Tranter M, Vatne G. 2000. Contemporary rates of chemical denudation and atmospheric CO2 sequestration in glacier basins: An Arctic perspective. Earth Surface Processes and Landforms, 25(13): 1447–1471, doi: 10.1002/1096-9837(200012)25:13<1447::AID-ESP156>3.0.CO;2-9
|
Hop H, Falk-Petersen S, Svendsen H, et al. 2006. Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Progress in Oceanography, 71(2–4): 182–231, doi: 10.1016/j.pocean.2006.09.007
|
Huang J, Kang S C, Zhang Q G, et al. 2013. Atmospheric deposition of trace elements recorded in snow from the Mt. Nyainqêntanglha region, southern Tibetan Plateau. Chemosphere, 92(8): 871–881, doi: 10.1016/j.chemosphere.2013.02.038
|
Huertas M J, López-Maury L, Giner-Lamia J, et al. 2014. Metals in cyanobacteria: Analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life, 4(4): 865–886, doi: 10.3390/life4040865
|
Hugonnet R, McNabb R, Berthier E, et al. 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature, 592(7856): 726–731, doi: 10.1038/s41586-021-03436-z
|
Ingri J, Widerlund A, Land M. 2005. Geochemistry of major elements in a pristine boreal river system; hydrological compartments and flow paths. Aquatic Geochemistry, 11(1): 57–88, doi: 10.1007/s10498-004-2248-0
|
IPCC. 2019. IPCC Special Report on the Ocean and Cryosphere in A Changing Climate (Pörtner H O, Roberts D C, Masson-Delmotte V, et al. , eds. ). Cambridge and New York: Cambridge University Press
|
Irvine-Fynn T D L, Bridge J W, Hodson A J. 2010. Rapid quantification of cryoconite: Granule geometry and in situ supraglacial extents, using examples from Svalbard and Greenland. Journal of Glaciology, 56(196): 297–308, doi: 10.3189/002214310791968421
|
Irvine-Fynn T D L, Hodson A J. 2010. Biogeochemistry and dissolved oxygen dynamics at a subglacial upwelling, Midtre Lovénbreen, Svalbard. Annals of Glaciology, 51(56): 41–46, doi: 10.3189/172756411795931903
|
Jacobson A D, Grace Andrews M, Lehn G O, et al. 2015. Silicate versus carbonate weathering in Iceland: New insights from Ca isotopes. Earth and Planetary Science Letters, 416: 132–142, doi: 10.1016/j.jpgl.2015.01.030
|
Klaebe R, Swart P, Frei R. 2021. Chromium isotope heterogeneity on a modern carbonate platform. Chemical Geology, 573: 120227, doi: 10.1016/j.chemgeo.2021.120227
|
Krawczyk W E, Lefauconnier B, Pettersson L E. 2003. Chemical denudation rates in the Bayelva Catchment, Svalbard, in the Fall of 2000. Physics and Chemistry of the Earth, Parts A/B/C, 28(28–32): 1257–1271, doi: 10.1016/j.pce.2003.08.054
|
Lehmann-Konera S, Kociuba W, Chmiel S, et al. 2021. Effects of biotransport and hydro-meteorological conditions on transport of trace elements in the Scott River (Bellsund, Spitsbergen). PeerJ, 9: e11477, doi: 10.7717/peerj.11477
|
Li X Y, Ding Y J, Hood E, et al. 2019. Dissolved iron supply from Asian Glaciers: Local controls and a regional perspective. Global Biogeochemical Cycles, 33(10): 1223–1237, doi: 10.1029/2018GB006113
|
Li X Y, He X B, Kang S C, et al. 2016. Diurnal dynamics of minor and trace elements in stream water draining Dongkemadi Glacier on the Tibetan Plateau and its environmental implications. Journal of Hydrology, 541: 1104–1118, doi: 10.1016/j.jhydrol.2016.08.021
|
Li X Y, Qin D H, Jing Z F, et al. 2013. Diurnal hydrological controls and non-filtration effects on minor and trace elements in stream water draining the Qiyi Glacier, Qilian Mountain. Science China Earth Sciences, 56(1): 81–92, doi: 10.1007/s11430-012-4480-6
|
Mark B G, McKenzie J M, Gómez J. 2005. Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: Callejon de Huaylas, Peru. Hydrological Sciences Journal, 50(6): 975–987, doi: 10.1623/hysj.2005.50.6.975
|
Miao A J, Wang W X, Juneau P. 2005. Comparison of Cd, Cu, and Zn toxic effects on four marine phytoplankton by pulse-amplitude-modulated fluorometry. Environmental Toxicology and Chemistry, 24(10): 2603–2611, doi: 10.1897/05-009R.1
|
Millero F J, Graham T B, Huang F, et al. 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry, 100(1–2): 80–94, doi: 10.1016/j.marchem.2005.12.001
|
Mitchell A C, Brown G H, Fuge R. 2005. Are minor and trace elements useful indicators of chemical weathering processes and flow-routing in subglacial hydrological systems?. In: Robert H, Susan F, eds. 62nd Eastern Snow Conference. Ontario: Waterloo Press , 49–67
|
Mitchell A C, Brown G H, Fuge R. 2006. Minor and trace elements as indicators of solute provenance and flow routing in a subglacial hydrological system. Hydrological Processes, 20(4): 877–897, doi: 10.1002/hyp.6112
|
Morel F M M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300(5621): 944–947, doi: 10.1126/science.1083545
|
Moroni B, Cappelletti D, Ferrero L, et al. 2016. Local vs. long-range sources of aerosol particles upon Ny-Ålesund (Svalbard Islands): mineral chemistry and geochemical records. Rendiconti Lincei, 27(1): 115–127, doi: 10.1007/s12210-016-0533-7
|
Nowak A, Hodson A. 2013. Hydrological response of a High-Arctic catchment to changing climate over the past 35 years: A case study of Bayelva watershed, Svalbard. Polar Research, 32(1): 19691, doi: 10.3402/polar.v32i0.19691
|
Nowak A, Hodson A. 2014. Changes in meltwater chemistry over a 20-year period following a thermal regime switch from polythermal to cold-based glaciation at Austre Brøggerbreen, Svalbard. Polar Research, 33(1): 22779, doi: 10.3402/polar.v33.22779
|
Nowak A, Hodson A. 2015. On the biogeochemical response of a glacierized High Arctic watershed to climate change: Revealing patterns, processes and heterogeneity among micro-catchments. Hydrological Processes, 29(6): 1588–1603, doi: 10.1002/hyp.10263
|
Perlt E, von Domaros M, Kirchner B, et al. 2017. Predicting the ionic product of water. Scientific Reports, 7: 10244, doi: 10.1038/s41598-017-10156-w
|
Platt S M, Hov Ø, Berg T, et al. 2022. Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund. Atmospheric Chemistry and Physics, 22(5): 3321–3369, doi: 10.5194/acp-22-3321-2022
|
Pratush A, Kumar A, Hu Z. 2018. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. International Microbiology, 21(3): 97–106, doi: 10.1007/s10123-018-0012-3
|
Raiswell R, Canfield D E. 2012. The iron biogeochemical cycle past and present. Geochemical Perspectives, 1(1): 1–220, doi: 10.7185/geochempersp.1.1
|
Rajaram R, Ganeshkumar A, Emmanuel Charles P. 2023. Ecological risk assessment of metals in the Arctic environment with emphasis on Kongsfjorden Fjord and freshwater lakes of Ny-Ålesund, Svalbard. Chemosphere, 310: 136737, doi: 10.1016/j.chemosphere.2022.136737
|
Reimann C, Caritat P. 1998. Chemical Elements in the Environment. Berlin, Heidelberg: Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-72016-1
|
Ren J L, Zhang J, Li J B, et al. 2006. Dissolved aluminum in the Yellow Sea and East China Sea - Al as a tracer of Changjiang (Yangtze River) discharge and Kuroshio incursion. Estuarine, Coastal and Shelf Science, 68(1–2): 165–174, doi: 10.1016/j.ecss.2006.02.004
|
Rudnick R L, Gao S. 2014. Composition of the continental crust. In: Rudnick R L, ed. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 4: 1–51, doi: 10.1016/B978-0-08-095975-7.00301-6
|
Rutter N, Hodson A, Irvine-Fynn T, et al. 2011. Hydrology and hydrochemistry of a deglaciating high-Arctic catchment, Svalbard. Journal of Hydrology, 410(1–2): 39–50, doi: 10.1016/j.jhydrol.2011.09.001
|
Singh A T, Laluraj C M, Sharma P, et al. 2017. Export fluxes of geochemical solutes in the meltwater stream of Sutri Dhaka Glacier, Chandra basin, Western Himalaya. Environmental Monitoring and Assessment, 189(11): 555, doi: 10.1007/s10661-017-6268-9
|
Stachnik Ł, Majchrowska E, Yde J C, et al. 2016. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard. Journal of Hydrology, 538: 177–193, doi: 10.1016/j.jhydrol.2016.03.059
|
Stachnik Ł, Yde J C, Nawrot A, et al. 2019. Aluminium in glacial meltwater demonstrates an association with nutrient export (Werenskiöldbreen, Svalbard). Hydrological Processes, 33(12): 1638–1657, doi: 10.1002/hyp.13426
|
Stumpf A R, Elwood Madden M E, Soreghan G S, et al. 2012. Glacier meltwater stream chemistry in Wright and Taylor Valleys, Antarctica: Significant roles of drift, dust and biological processes in chemical weathering in a polar climate. Chemical Geology, 322–323: 79–90, doi: 10.1016/j.chemgeo.2012.06.009
|
Svendsen H, Beszczynska-Møller A, Hagen J O, et al. 2002. The physical environment of Kongsfjorden – Krossfjorden, an Arctic fjord system in Svalbard. Polar Research, 21(1): 133–166, doi: 10.1111/j.1751-8369.2002.tb00072.x
|
Tagliabue A, Bowie A R, Boyd P W, et al. 2017. The integral role of iron in ocean biogeochemistry. Nature, 543(7643): 51–59, doi: 10.1038/nature21058
|
Tranter M, Sharp M J, Lamb H R, et al. 2002. Geochemical weathering at the bed of Haut glacier d’Arolla, Switzerland - A new model. Hydrological Processes, 16(5): 959–993, doi: 10.1002/hyp.309
|
Tranter M, Wadham J L. 2014. Geochemical weathering in glacial and proglacial environments. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 7: 157–173
|
Vance D, Little S H, De Souza G F, et al. 2017. Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nature Geoscience, 10(3): 202–206, doi: 10.1038/ngeo2890
|
Vargo L J, Anderson B M, Dadić R, et al. 2020. Anthropogenic warming forces extreme annual glacier mass loss. Nature Climate Change, 10(9): 856–861, doi: 10.1038/s41558-020-0849-2
|
Wadham J L, Tranter M, Hodson A J, et al. 2010. Hydro-biogeochemical coupling beneath a large polythermal Arctic glacier: Implications for subice sheet biogeochemistry. Journal of Geophysical Research: Earth Surface, 115(F4): F04017, doi: 10.1029/2009JF001602
|
Willis K, Cottier F, Kwasniewski S, et al. 2006. The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). Journal of Marine Systems, 61(1–2): 39–54, doi: 10.1016/j.jmarsys.2005.11.013
|
Woosley R J, Moon J Y. 2023. Re-evaluation of carbonic acid dissociation constants across conditions and the implications for ocean acidification. Marine Chemistry, 250: 104247, doi: 10.1016/j.marchem.2023.104247
|
Yde J C, Knudsen N T, Hasholt B, et al. 2014. Meltwater chemistry and solute export from a Greenland Ice Sheet catchment, Watson River, West Greenland. Journal of Hydrology, 519: 2165–2179, doi: 10.1016/j.jhydrol.2014.10.018
|
Yde J C, Riger-Kusk M, Christiansen H H, et al. 2008. Hydrochemical characteristics of bulk meltwater from an entire ablation season, Longyearbreen, Svalbard. Journal of Glaciology, 54(185): 259–272, doi: 10.3189/002214308784886234
|
Ye L P, Zhang R F, Sun Q Z, et al. 2018. Hydrochemistry of the meltwater streams on Fildes Peninsula, King George Island, Antarctica. Journal of Oceanology and Limnology, 36(6): 2181–2193, doi: 10.1007/s00343-019-7193-2
|
Zeng C, Gremaud V, Zeng H T, et al. 2012. Temperature-driven meltwater production and hydrochemical variations at a glaciated alpine karst aquifer: Implication for the atmospheric CO2 sink under global warming. Environmental Earth Sciences, 65(8): 2285–2297, doi: 10.1007/s12665-011-1160-3
|
Zhan J Q, Gao Y, Li W, et al. 2014. Effects of ship emissions on summertime aerosols at Ny-Alesund in the Arctic. Atmospheric Pollution Research, 5(3): 500–510, doi: 10.5094/APR.2014.059
|
Zhang R F, John S G, Zhang J, et al. 2015. Transport and reaction of iron and iron stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: From rivers to estuary to ocean. Earth and Planetary Science Letters, 424: 201–211, doi: 10.1016/j.jpgl.2015.05.031
|