Citation: | Xueqing Yu, Jian’an Liu, Zhuoyi Zhu, Xiaogang Chen, Tong Peng, Jinzhou Du. The significant role of submarine groundwater discharge in an Arctic fjord nutrient budget[J]. Acta Oceanologica Sinica, 2024, 43(10): 74-85. doi: 10.1007/s13131-024-2418-4 |
Arrigo K R, van Dijken G L. 2011. Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research: Oceans, 116(C9): C09011, doi: 10.1029/2011JC007151
|
Baléo J N, Humeau P, Le Cloirec P. 2001. Numerical and experimental hydrodynamic studies of a lagoon pilot. Water Research, 35(9): 2268–2276, doi: 10.1016/S0043-1354(00)00502-9
|
Berelson W M, Heggie D, Longmore A, et al. 1998. Benthic nutrient recycling in Port Phillip Bay, Australia. Estuarine, Coastal and Shelf Science, 46(6): 917–934,doi: 10.1006/ecss.1998.0328
|
Bridgestock L, Nathan J, Hsieh Y T, et al. 2021a. Assessing the utility of barium isotopes to trace Eurasian riverine freshwater inputs to the Arctic Ocean. Marine Chemistry, 236: 104029, doi: 10.1016/j.marchem.2021.104029
|
Bridgestock L, Nathan J, Paver R, et al. 2021b. Estuarine processes modify the isotope composition of dissolved riverine barium fluxes to the ocean. Chemical Geology, 579: 120340, doi: 10.1016/j.chemgeo.2021.120340
|
Bullock E J, Kipp L, Moore W, et al. 2022. Radium inputs into the Arctic Ocean from rivers: A basin-wide estimate. Journal of Geophysical Research: Oceans, 127(9): e2022JC018964, doi: 10.1029/2022JC018964
|
Burnett W C, Bokuniewicz H, Huettel M, et al. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1): 3–33, doi: 10.1023/B:BIOG.0000006066.21240.53
|
Burnett W C, Peterson R, Moore W S, et al. 2008. Radon and radium isotopes as tracers of submarine groundwater discharge-Results from the Ubatuba, Brazil SGD assessment intercomparison. Estuarine, Coastal and Shelf Science, 76(3): 501–511, doi: 10.1016/j.ecss.2007.07.027
|
Carmack E C, Yamamoto-Kawai M, Haine T W N, et al. 2016. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. Journal of Geophysical Research: Biogeosciences, 121(3): 675–717, doi: 10.1002/2015JG003140
|
Cerdà-Domènech M, Rodellas V, Folch A, et al. 2017. Constraining the temporal variations of Ra isotopes and Rn in the groundwater end-member: Implications for derived SGD estimates. Science of the Total Environment, 595: 849–857, doi: 10.1016/j.scitotenv.2017.03.005
|
Charette M A, Breier C F, Henderson P B, et al. 2013. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident. Biogeosciences, 10(3): 2159–2167, doi: 10.5194/bg-10-2159-2013
|
Charkin A N, Dudarev O V, Semiletov I P, et al. 2011. Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor-Khaya Gulf: the primary recipient of input from Lena River and coastal erosion in the southeast Laptev Sea. Biogeosciences, 8(9): 2581–2594, doi: 10.5194/bg-8-2581-2011
|
Charkin A N, van der Loeff M R, Shakhova N E, et al. 2017. Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas: a case study in the Buor-Khaya Gulf, Laptev Sea. The Cryosphere, 11(5): 2305–2327, doi: 10.5194/tc-11-2305-2017
|
Chen Xiaogang, Cukrov N, Santos I R, et al., 2020. Karstic submarine groundwater discharge into the Mediterranean: Radon-based nutrient fluxes in an anchialine cave and a basin-wide upscaling. Geochimica et Cosmochimica Acta, 268: 467–484, doi: 10.1016/j.gca.2019.08.019
|
Chen Meilian, Kim J H, Nam S I, et al. 2016. Production of fluorescent dissolved organic matter in Arctic Ocean sediments. Scientific Reports, 6(1): 39213, doi: 10.1038/srep39213
|
Chen Xiaogang, Lao Yanling, Wang Jinlong, et al. 2018. Submarine groundwater-borne nutrients in a tropical bay (Maowei Sea, China) and their impacts on the oyster aquaculture. Geochemistry, Geophysics, Geosystems, 19(3): 932–951,doi: 10.1002/2017GC007330
|
Cho H M, Kim G. 2017. Large temporal changes in contributions of groundwater-borne nutrients to coastal waters off a volcanic island. Ocean Science Journal, 52(3): 337–344, doi: 10.1007/s12601-017-0033-4
|
Collins M, Knutti R, Arblaster J, et al. 2013. Long-term climate change: projections, commitments and irreversibility. In: Climate Change 2013—The Physical Science Basis: Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, USA: Cambridge University Press, 1029–1136
|
Connolly C T, Cardenas M B, Burkart G A, et al. 2020. Groundwater as a major source of dissolved organic matter to Arctic coastal waters. Nature Communications, 11(1): 1479, doi: 10.1038/s41467-020-15250-8
|
Dabrowski J S, Charette M A, Mann P J, et al. 2020. Using radon to quantify groundwater discharge and methane fluxes to a shallow, tundra lake on the Yukon-Kuskokwim Delta, Alaska. Biogeochemistry, 148(1): 69–89, doi: 10.1007/s10533-020-00647-w
|
Deming D, Sass J H, Lachenbruch A H, et al. 1992. Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska. GSA Bulletin, 104(5): 528–542, doi: 10.1130/0016-7606(1992)104<0528:HFASTA>2.3.CO;2
|
Dimova N T, Burnett W C. 2011. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222. Limnology and Oceanography, 56(2): 486–494, doi: 10.4319/lo.2011.56.2.0486
|
Dimova N T, Paytan A, Kessler J D, et al. 2015. Current magnitude and mechanisms of groundwater discharge in the Arctic: Case study from Alaska. Environmental Science & Technology, 49(20): 12036–12043, doi: 10.1021/acs.est.5b02215
|
Duan Liangliang, Man Xiuling, Kurylyk B L, et al. 2017. Increasing winter baseflow in response to permafrost thaw and precipitation regime shifts in northeastern China. Water, 9(1): 25, doi: 10.3390/w9010025
|
Dzyuba A V, Zektser I S. 2013. Variations in submarine groundwater runoff as a possible cause of decomposition of marine methane-hydrates in the Arctic. Water Resources, 40(1): 74–83, doi: 10.1134/S009780781301003x
|
Frederick J M, Buffett B A. 2015. Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf. Journal of Geophysical Research: Earth Surface, 120(3): 417–432, doi: 10.1002/2014JF003349
|
Garcia-Orellana J, Rodellas V, Tamborski J, et al. 2021. Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations. Earth-Science Reviews, 220: 103681, doi: 10.1016/j.earscirev.2021.103681
|
Geyer W R, Morris J T, Prahl F G, et al. 2000. Interaction between physical processes and ecosystem structure: A comparative approach. In: Hobbie J, ed. Estuarine Science: A Synthetic Approach to Research and Practice. Washington, DC: Island Press, 177–206
|
Glibert P M, Mayorga E, Seitzinger S. 2008. Prorocentrum minimum tracks anthropogenic nitrogen and phosphorus inputs on a global basis: application of spatially explicit nutrient export models. Harmful Algae, 8(1): 33–38, doi: 10.1016/j.hal.2008.08.023
|
Guimond J A, Mohammed A A, Walvoord M A, et al. 2022. Sea-level rise and warming mediate coastal groundwater discharge in the Arctic. Environmental Research Letters, 17(4): 045027, doi: 10.1088/1748-9326/ac6085
|
Haine T W N, Curry B, Gerdes R, et al. 2015. Arctic freshwater export: Status, mechanisms, and prospects. Global and Planetary Change, 125: 13–35, doi: 10.1016/j.gloplacha.2014.11.013
|
Haldorsen S, Heim M. 1999. An Arctic groundwater system and its dependence upon climatic change: an example from Svalbard. Permafrost and Periglacial Processes, 10(2): 137–149, doi: 10.1002/(SICI)1099-1530(199904/06)10:2<137::AID-PPP316>3.0.CO;2-#
|
Hay A E. 1984. Remote acoustic imaging of the plume from a submarine spring in an Arctic fjord. Science, 225(4667): 1154–1156, doi: 10.1126/science.225.4667.1154
|
Hodson A J, Nowak A, Redeker K R, et al. 2019. Seasonal dynamics of methane and carbon dioxide evasion from an open system pingo: Lagoon pingo, Svalbard. Frontiers in Earth Science, 7: 30, doi: 10.3389/feart.2019.00030
|
Hop H, Wiencke C. 2019. The ecosystem of Kongsfjorden, Svalbard. In: The Ecosystem of Kongsfjorden, Svalbard. Cham: Springer, 1–20
|
Hwang D W, Kim G, Lee W C, et al. 2010. The role of submarine groundwater discharge (SGD) in nutrient budgets of Gamak Bay, a shellfish farming bay, in Korea. Journal of Sea Research, 64(3): 224–230, doi: 10.1016/j.seares.2010.02.006
|
Hwang D W, Kim G, Lee Y W, et al. 2005. Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Marine Chemistry, 96(1–2): 61–71, doi: 10.1016/j.marchem.2004.11.002
|
Jacques J M St, Sauchyn D J. 2009. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophysical Research Letters, 36(1): L01401, doi: 10.1029/2008GL035822
|
Jickells T D. 1998. Nutrient biogeochemistry of the coastal zone. Science, 281(5374): 217–222, doi: 10.1126/science.281.5374.217
|
Kim B K, Joo H M, Jung J, et al. 2020. In situ rates of carbon and nitrogen uptake by phytoplankton and the contribution of picophytoplankton in Kongsfjorden, Svalbard. Water, 12(10): 2903, doi: 10.3390/w12102903
|
Kim G, Kim J S, Hwang D W. 2011. Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: Implications for global biological production and organic carbon fluxes. Limnology and Oceanography, 56(2): 673–682, doi: 10.4319/lo.2011.56.2.0673
|
Kim J H, Ryu J S, Hong W L, et al. 2022. Assessing the impact of freshwater discharge on the fluid chemistry in the Svalbard fjords. Science of the Total Environment, 835: 155516, doi: 10.1016/j.scitotenv.2022.155516
|
Kim G, Ryu J W, Yang H S, et al. 2005. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: Implications for global silicate fluxes. Earth and Planetary Science Letters, 237(1−2): 156–166, doi: 10.1016/j.jpgl.2005.06.011
|
Kipp L E, Charette M A, Moore W S, et al. 2018. Increased fluxes of shelf-derived materials to the central Arctic Ocean. Science Advances, 4(1): eaao1302, doi: 10.1126/sciadv.aao1302
|
Knee K L, Paytan A. 2011. Submarine groundwater discharge: a source of nutrients, metals, and pollutants to the coastal ocean. In: Wolanski E, McLusky D, eds. Treatise on Estuarine and Coastal Science. Amsterdam: Academic Press, 4: 205–233
|
Kuliński K, Kędra M, Legeżyńska J, et al. 2014. Particulate organic matter sinks and sources in high Arctic fjord. Journal of Marine Systems, 139: 27–37, doi: 10.1016/j.jmarsys.2014.04.018
|
Kwon E Y, Kim G, Primeau F, et al. 2014. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophysical Research Letters, 41(23): 8438–8444, doi: 10.1002/2014GL061574
|
Lecher A L. 2015. From the land to the sea: Impacts of submarine groundwater discharge on the coastal ocean of California and Alaska [dissertation]. Santa Cruz: University of California
|
Lecher A L. 2017. Groundwater discharge in the Arctic: A review of studies and implications for biogeochemistry. Hydrology, 4(3): 41, doi: 10.3390/hydrology4030041
|
Lecher A L, Chien C T, Paytan A. 2016a. Submarine groundwater discharge as a source of nutrients to the North Pacific and Arctic coastal ocean. Marine Chemistry, 186: 167–177, doi: 10.1016/j.marchem.2016.09.008
|
Lecher A L, Kessler J, Sparrow K, et al. 2016b. Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites. Limnology and Oceanography, 61(S1): S344–S355, doi: 10.1002/lno.10118
|
Lee Y W, Kim G, Lim W A, et al. 2010. A relationship between submarine groundwater borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea. Limnology and Oceanography, 55(1): 1–10, doi: 10.4319/lo.2010.55.1.0001
|
Lewis K M, Van Dijken G L, Arrigo K R. 2020. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science, 369(6500): 198–202, doi: 10.1126/science.aay8380
|
Linhoff B S, Charette M A, Nienow P W, et al. 2017. Utility of 222Rn as a passive tracer of subglacial distributed system drainage. Earth and Planetary Science Letters, 462: 180–188, doi: 10.1016/j.jpgl.2016.12.039
|
Linhoff B S, Charette M A, Wadham J. 2020. Rapid mineral surface weathering beneath the Greenland Ice Sheet shown by radium and uranium isotopes. Chemical Geology, 547: 119663, doi: 10.1016/j.chemgeo.2020.119663
|
Liu Jian’an, Du Jinzhou, Yi Lixin. 2017. Ra tracer-based study of submarine groundwater discharge and associated nutrient fluxes into the Bohai Sea, China: A highly human-affected marginal sea. Journal of Geophysical Research: Oceans, 122(11): 8646–8660, doi: 10.1002/2017jc013095
|
Liu Jian’an, Du Jinzhou, Yu Xueqing. 2021. Submarine groundwater discharge enhances primary productivity in the Yellow Sea, China: Insight from the separation of fresh and recirculated components. Geoscience Frontiers, 12(6): 101204, doi: 10.1016/j.gsf.2021.101204
|
Liu Sumei, Hong G H, Zhang Jing, et al. 2009. Nutrient budgets for large Chinese estuaries. Biogeosciences, 6(10): 2245–2263, doi: 10.5194/bg-6-2245-2009
|
Liu Jian’an, Liu Dongyan, Du Jinzhou. 2022. Radium-traced nutrient outwelling from the Subei Shoal to the Yellow Sea: Fluxes and environmental implication. Acta Oceanologica Sinica, 41(6): 12–21, doi: 10.1007/s13131-021-1930-z
|
Luo Xin, Jiao Jiu Jimmy. 2016. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks. Water Research, 102: 11–31, doi: 10.1016/j.watres.2016.06.017
|
Luo Xin, Jiao Jiu Jimmy, Moore W S, et al. 2014. Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production. Marine Pollution Bulletin, 82(1–2): 144–154, doi: 10.1016/j.marpolbul.2014.03.005
|
McCoy C, Viso R, Peterson R N, et al. 2011. Radon as an indicator of limited cross-shelf mixing of submarine groundwater discharge along an open ocean beach in the South Atlantic Bight during observed hypoxia. Continental Shelf Research, 31(12): 1306–1317, doi: 10.1016/j.csr.2011.05.009
|
McGovern M, Warner N A, Borgå K, et al. 2022. Is Glacial Meltwater a Secondary Source of Legacy Contaminants to Arctic Coastal Food Webs?. Environmental Science and Technology, 56(10): 6337–6348, doi: 10.1021/acs.est.1c07062
|
Michael H A, Mulligan A E, Harvey C F. 2005. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature, 436(7054): 1145–1148, doi: 10.1038/nature03935
|
Moore W S. 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380(6575): 612–614, doi: 10.1038/380612a0
|
Moore W S. 2010. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science, 2(1): 59–88, doi: 10.1146/annurev-marine-120308-081019
|
Moore W S, Arnold R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans, 101 (C1): 1321–1329, doi: 10.1029/95JC03139
|
Moore W S, Blanton J O, Joye S B. 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research: Oceans, 111(C9): C09006, doi: 10.1029/2005JC003041
|
Morison J, Kwok R, Peralta-Ferriz C, et al. 2012. Changing Arctic Ocean freshwater pathways. Nature, 481(7379): 66–70, doi: 10.1038/nature10705
|
Neilson B T, Cardenas M B, O’Connor M T, et al. 2018. Groundwater flow and exchange across the land surface explain carbon export patterns in continuous permafrost watersheds. Geophysical Research Letters, 45(15): 7596–7605, doi: 10.1029/2018gl078140
|
Oehler T, Eiche E, Putra D, et al. 2018. Seasonal variability of land-ocean groundwater nutrient fluxes from a tropical karstic region (southern Java, Indonesia). Journal of Hydrology, 565: 662–671, doi: 10.1016/j.jhydrol.2018.08.077
|
Olichwer T, Tarka R, Modelska M. 2013. Chemical composition of groundwaters in the Hornsund region, southern Spitsbergen. Hydrology Research, 44(1): 117–130, doi: 10.2166/nh.2012.075
|
Peng Tong, Zhu Zhuoyi, Du Jinzhou, et al. 2021. Effects of nutrient-rich submarine groundwater discharge on marine aquaculture: A case in Lianjiang, East China Sea. Science of the Total Environment, 786: 147388, doi: 10.1016/j.scitotenv.2021.147388
|
Peral M, Austin W E N, Noormets R. 2022. Identification of Atlantic water inflow on the north Svalbard shelf during the Holocene. Journal of Quaternary Science, 37(1): 86–99, doi: 10.1002/jqs.3374
|
Peterson B J, Holmes R M, McClelland J W, et al. 2002. Increasing river discharge to the Arctic Ocean. Science, 298(5601): 2171–2173, doi: 10.1126/science.1077445
|
Piquet A M T, Van de Poll W H, Visser R J W, et al. 2014. Springtime phytoplankton dynamics in the Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences, 11(8): 2263–2279, doi: 10.5194/bgd-10-15519-2013
|
Polyakov I V, Walsh J E, Kwok R. 2012. Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bulletin of the American Meteorological Society, 93(2): 145–151, doi: 10.1175/BAMS-D-11-00070.1
|
Rabe B, Karcher M, Kauker F, et al. 2014. Arctic Ocean basin liquid freshwater storage trend 1992–2012. Geophysical Research Letters, 41(3): 961–968, doi: 10.1002/2013GL058121
|
Rodellas V, Garcia-Orellana J, Masqué P, et al. 2015. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proceedings of the National Academy of Sciences of the United States of America, 112(13): 3926–3930, doi: 10.1073/pnas.1419049112
|
Rosén P O, Andersson P S, Alling V, et al. 2015. Ice export from the Laptev and East Siberian Sea derived from δ18O values. Journal of Geophysical Research: Oceans, 120(9): 5997–6007, doi: 10.1002/2015JC010866
|
Sadat-Noori M, Santos I R, Sanders C J, et al. 2015. Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. Journal of Hydrology, 528: 703–719, doi: 10.1016/j.jhydrol.2015.06.056
|
Sanford L P, Boicourt W C, Rives S R. 1992. Model for estimating tidal flushing of small embayments. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(6): 635–654, doi: 10.1061/(ASCE)0733-950X(1992)118:6(635
|
Santos I R, Chen Xiaogang, Lecher A L, et al. 2021. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2(5): 307–323, doi: 10.1038/s43017-021-00152-0
|
Santos I R, Eyre B D, Huettel M. 2012. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuarine, Coastal and Shelf Science, 98: 1–15, doi: 10.1016/j.ecss.2011.10.024
|
Semenov P, Portnov A, Krylov A, et al. 2020. Geochemical evidence for seabed fluid flow linked to the subsea permafrost outer border in the South Kara Sea. Geochemistry, 80(3): 125509, doi: 10.1016/j.chemer.2019.04.005
|
Sinha R K, Krishnan K P, Hatha A A, et al. 2017. Diversity of retrievable heterotrophic bacteria in Kongsfjorden, an Arctic fjord. Brazilian Journal of Microbiology, 48(1): 51–61, doi: 10.1016/j.bjm.2016.09.011
|
Slomp C P, Van Cappellen P. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 295(1−4): 64–86, doi: 10.1016/j.jhydrol.2004.02.018
|
Smith L C, Sheng Yongwei, MacDonald G M. 2007. A first pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution. Permafrost and Periglacial Processes, 18(2): 201–208, doi: 10.1002/ppp.581
|
Stewart K J, Grogan P, Coxson D S, et al. 2014. Topography as a key factor driving atmospheric nitrogen exchanges in Arctic terrestrial ecosystems. Soil Biology and Biochemistry, 70: 96–112, doi: 10.1016/j.soilbio.2013.12.005
|
Su Ni, Du Jinzhou, Moore W S, et al. 2011. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra. Science of the Total Environment, 409(19): 3909–3918, doi: 10.1016/j.scitotenv.2011.06.017
|
Svendsen H, Beszczynska-Møller A, Hagen J O, et al. 2002. The physical environment of Kongsfjorden– Krossfjorden, an Arctic fjord system in Svalbard. Polar Research, 21(1): 133–166, doi: 10.1016/j.ecss.2006.07.022
|
Swarzenski P W. 2007. U/Th series radionuclides as coastal groundwater tracers. Chemical Reviews, 107(2): 663–674, doi: 10.1021/cr0503761
|
Taniguchi M, Burnett W C, Smith C F, et al. 2003. Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico. Biogeochemistry, 66(1−2): 35–53, doi: 10.1023/B:BIOG.0000006090.25949.8d
|
Terhaar J, Lauerwald R, Regnier P, et al. 2021. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nature Communications, 12(1): 169, doi: 10.1038/s41467-020-20470-z
|
Torsvik T, Albretsen J, Sundfjord A, et al. 2019. Impact of tidewater glacier retreat on the fjord system: Modeling present and future circulation in Kongsfjorden, Svalbard. Estuarine, Coastal and Shelf Science, 220: 152–165, doi: 10.1016/j.ecss.2019.02.005
|
Vonk J E, Sánchez-García L, Van Dongen B E, et al. 2012. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature, 489(7414): 137–140, doi: 10.1038/nature11392
|
Wales N A, Gomez-Velez J D, Newman B D, et al. 2020. Understanding the relative importance of vertical and horizontal flow in ice-wedge polygons. Hydrology and Earth System Sciences, 24(3): 1109–1129, doi: 10.5194/hess-24-1109-2020
|
Walvoord M A, Striegl R G. 2007. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophysical Research Letters, 34(12), doi: 10.1029/2007GL030216
|
Walvoord M A, Voss C I, Ebel B A, et al. 2019. Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon. Environmental Research Letters, 14(1): 015003, doi: 10.1088/1748-9326/aaf0cc
|
Wang Xilong, Du Jinzhou, Ji Tao, et al. 2014. An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay-A typical multi-species culture ecosystem in China. Marine Chemistry, 167: 113–122, doi: 10.1016/j.marchem.2014.07.002
|
Wang Xuejing, Li Hailong, Yang Jinzhong, et al. 2017. Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China. Journal of Hydrology, 551: 784–792, doi: 10.1016/j.jhydrol.2017.02.036
|
Wang Xuejing, Li Hailong, Zheng Chunmiao, et al. 2018. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China. Geochimica et Cosmochimica Acta, 225: 52–65, doi: 10.1016/j.gca.2018.01.029
|
Whalen S C, Cornwell J C. 1985. Nitrogen, phosphorus, and organic carbon cycling in an Arctic Lake. Canadian Journal of Fisheries and Aquatic Sciences, 42(4): 797–808, doi: 10.1139/f85-102
|
Yang Yichao, Ren Jingling, Zhu Zhuoyi. 2022. Distributions and influencing factors of dissolved manganese in Kongsfjorden and Ny-Ålesund, Svalbard. ACS Earth and Space Chemistry, 6(5): 1259–1268, doi: 10.1021/acsearthspacechem.1c00388
|
Yoshikawa K, Harada K. 1995. Observations on nearshore pingo growth, Adventdalen, Spitsbergen. Permafrost and Periglacial Processes, 6(4): 361–372, doi: 10.1002/ppp.3430060407
|
Zhang Jinlun, Spitz Y H, Steele M, et al. 2010. Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem. Journal of Geophysical Research: Oceans, 115(C10): C10015, doi: 10.1029/2009JC005387
|
Zhu Zhuoyi. 2022. Clarifying the fate of dissolved organic carbon in turbid glacier meltwater rivers in Svalbard via a series of incubations. Biogeochemistry, 159(3): 337–352, doi: 10.1007/s10533-022-00931-x
|
Zhu Zhuoyi, Wu Ying, Liu Sumei, et al. 2016. Organic carbon flux and particulate organic matter composition in Arctic valley glaciers: examples from the Bayelva River and adjacent Kongsfjorden. Biogeosciences, 13(4): 975–987, doi: 10.5194/bg-13-975-2016
|