RONG Kunbo, ZENG Zhigang, YIN Xuebo, CHEN Shuai, WANG Xiaoyuan, QI Haiyan, MA Yao. Smectite formation in metalliferous sediments near the East Pacific Rise at 13°N[J]. Acta Oceanologica Sinica, 2018, 37(9): 67-81. doi: doi:10.1007/s13131-018-1265-6
Citation: RONG Kunbo, ZENG Zhigang, YIN Xuebo, CHEN Shuai, WANG Xiaoyuan, QI Haiyan, MA Yao. Smectite formation in metalliferous sediments near the East Pacific Rise at 13°N[J]. Acta Oceanologica Sinica, 2018, 37(9): 67-81. doi: doi:10.1007/s13131-018-1265-6

Smectite formation in metalliferous sediments near the East Pacific Rise at 13°N

doi: doi:10.1007/s13131-018-1265-6
  • Received Date: 2017-08-14
  • A 43 cm long E271 sediment core collected near the East Pacific Rise (EPR) at 13°N were studied to investigate the origin of smectite for understanding better the geochemical behavior of hydrothermal material after deposition. E271 sediments are typical metalliferous sediments. After removal of organic matter, carbonate, biogenic opal, and Fe-Mn oxide by a series of chemical procedures, clay minerals (<2 μm) were investigated by X-ray diffraction, chemical analysis and Si isotope analysis. Due to the influence of seafloor hydrothermal activity and close to continent, the sources of clay minerals are complex. Illite, chlorite and kaolinite are suggested to be transported from either North or Central America by rivers or winds, but smectite is authigenic. It is enriched in iron, and its contents are highest in clay minerals. Data show that smectite is most likely formed by the reaction of hydrothermal Fe-oxyhydroxide with silica and seawater in metalliferous sediments. The Si that participates in this reaction may be derived from siliceous microfossils (diatoms or radiolarians), hydrothermal fluids, or detrital mineral phases. And their δ30Si values are higher than those of authigenic smectites, which implies that a Si isotope fractionation occurs during the formation because of the selective absorption of light Si isotopes onto Fe-oxyhydroxides. Sm/Fe mass ratios (a proxy for overall REE/Fe ratio) in E271 clay minerals are lower than those in metalliferous sediments, as well as distal hydrothermal plume particles and terrigenous clay minerals. This result suggests that some REE are lost during the smectite formation, perhaps because their large ionic radii of REE scavenged by Fe-oxyhydroxides preclude substitution in either tetrahedral or octahedral lattice sites of this mineral structure, which decreases the value of metalliferous sediments as a potential resource for REE.
  • loading
  • Alt J C. 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Marine Geology, 81(1-4):227-239
    Alt J C, Lonsdale P, Haymon R, et al. 1987. Hydrothermal sulfide and oxide deposits on seamounts near 21°N, East Pacific Rise. Geological Society of America Bulletin, 98(2):157-168
    Antrim L, Sempere J C, Macdonald K C, et al. 1988. Fine scale study of a small overlapping spreading center system at 12°54'N on the East Pacific Rise. Marine Geophysical Researches, 9(2):115-130
    Ballard R D, Hekinian R, Francheteau J. 1984. Geological setting of hydrothermal activity at 12°50'N on the East Pacific Rise:a submersible study. Earth and Planetary Science Letters, 69(1):176-186
    Banks H H Jr. 1972. Iron-rich saponite:additional data on samples dredged from the Mid-Atlantic Ridge, 22°N latitude. Smithsonian Contributions to the Earth Sciences, 9:39-42
    Barrett T J, Friedrichsen H, Fleet A J. 1983. Elemental and stable isotopic composition of some metalliferous and pelagic sediments from the Galapagos mounds area, deep sea drilling project leg 70. In:Honnorez J, Von Herzen R P, eds. Initial Reports of the Deep Sea Drilling Project 70. Washington:U.S. Government Printing Office, 315-323
    Barrett T J, Taylor P N, Jarvis I, et al. 1986. Pb and Sr isotope and rare earth element composition of selected metalliferous sediments from sites 597 to 601, Deep Sea Drilling Project Leg 92. In:Leinen M, Rea D K, eds. Initial Reports of the Deep Sea Drilling Project 92. Washington:U.S. Government Printing Office, 391-407
    Basile-Doelsch I. 2006. Si stable isotopes in the earth's surface:a review. Journal of Geochemical Exploration, 88(1-3):252-256
    Basile-Doelsch I, Meunier J D, Parron C. 2005. Another continental pool in the terrestrial silicon cycle. Nature, 433(7024):399-402
    Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76(7):803-832
    Bischoff J L. 1972. A ferroan nontronite from the Red Sea geothermal system. Clays and Clay Minerals, 20(4):217-223
    Bonatti E, Kraemer T, Rydell H. 1972. Classification and genesis of submarine iron-manganese deposits. In:Horn D R, ed. Ferromanganese Deposits on the Ocean Floor. Washington D C:National Science Foundation, 149-166
    Boström K. 1973. The origin and fate of ferromanganoan active ridge sediments. Stockholm Contributions to Geology, 27(2):149-243
    Buatier M D, Karpoff A M, Boni M, et al. 1994. Mineralogic and petrographic records of sediment-fluid interaction in the sedimentary sequence at Middle Valley, Juan de Fuca Ridge, Leg 139. In:Mottl M J, Davis E E, Fisher A T, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 139. Ocean Drilling Program:College Station, TX, 133-154
    Buatier M D, Karpoff A M, Charpentier D. 2002. Clays and zeolite authigenesis in sediments from the flank of the Juan de Fuca Ridge. Clay Minerals, 37(1):143-155
    Buatier M D, Monnin C, Früh-Green G L, et al. 2001. Fluid-sediment interactions related to hydrothermal circulation in the Eastern Flank of the Juan de Fuca Ridge. Chemical Geology, 175(3-4):343-360
    Butuzova G Y, Drits V A, Lisistyana N A, et al. 1979. Formation dynamics of clay minerals in ore-bearing sediments in the Atlantis Ⅱ basin, Red Sea. Lithol Miner Resour, 14:23-32
    Carey S, Olsen R, Bell K L C, et al. 2016. Hydrothermal venting and mineralization in the crater of Kick'em Jenny submarine volcano, Grenada (Lesser Antilles). Geochemistry, Geophysics, Geosystems, 17(3):1000-1019
    Chamley H. 1989. Clay Sedimentology. Berlin, Heidelberg:Springer-Verlag, 259-289
    Charlou J L, Bougault H, Appriou P, et al. 1991. Water column anomalies associated with hydrothermal activity between 11°40' and 13°N on the East Pacific Rise:discrepancies between tracers. Deep Sea Research Part A. Oceanographic Research Papers, 38(5):569-596
    Chester R, Hughes M J. 1967. A Chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chemical Geology, 2:249-262
    Choukroune P, Francheteau J, Hekinian R. 1984. Tectonics of the East Pacific Rise near 12°50'N:a submersible study. Earth and Planetary Science Letters, 68(1):115-127
    Cole T G. 1985. Composition, oxygen isotope geochemistry and origin of smectite in the metalliferous sediments of the Bauer Deep, southeast Pacific. Geochimica et Cosmochimica Acta, 49(1):221-235
    Cole T G. 1988. The nature and origin of smectite in the Atlantis Ⅱ Deep, Red Sea. The Canadian Mineralogist, 26(3):755-763
    Cole T G, Shaw H F. 1983. The nature and origin of authigenic smectites in some recent marine sediments. Clay Minerals, 18(3):239-252
    Crane K. 1987. Structural evolution of the east pacific rise axis from 13°10'N to 10°35'N:interpretations from SeaMARC I data. Tectonophysics, 136(1-2):65-124
    Cuadros J, Dekov V M, Arroyo X, et al. 2011. Smectite formation in submarine hydrothermal sediments:samples from the HMS challenger expedition (1872-1876). Clays and Clay Minerals, 59(2):147-164
    Davydov M P, Sudarikov S M, Aleksandrov P A, et al. 2002. Geochemistry of the metalliferous sediments of hydrothermal fields of the east pacific rise, 11°30'-13°N. Part 1. Geochemistry of Holocene Sediments. Geochemistry International, 40(3):279-298
    De Baar H J W, Bacon M P, Brewer P G, et al. 1985. Rare earth elements in the pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta, 49(9):1943-1959
    De La Rocha C L, Brzezinski M A, DeNiro M J, et al. 1998. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature, 395(6703):680-683
    De La Rocha C L, Brzezinski M A, DeNiro M J. 2000. A first look at the distribution of the stable isotopes of silicon in natural waters. Geochimica et Cosmochimica Acta, 64(14):2467-2477
    Dekov V M, Cuadros J, Kamenov G D, et al. 2010. Metalliferous sediments from the H. M.S. Challenger voyage (1872-1876). Geochimica et Cosmochimica Acta, 74(17):5019-5038
    Dekov V M, Cuadros J, Shanks W C, et al. 2008. Deposition of talc-kerolite-smectite-smectite at seafloor hydrothermal vent fields:evidence from mineralogical, geochemical and oxygen isotope studies. Chemical Geology, 247(1-2):171-194
    Demarest M S, Brzezinski M A, Beucher C P. 2009. Fractionation of silicon isotopes during biogenic silica dissolution. Geochimica et Cosmochimica Acta, 73(19):5572-5583
    Ding Tiping, Jiang Shaoyong, Wan Defang, et al. 1996. Silicon Isotope Geochemistry. Beijing:Geological Publishing House
    Douthitt C B. 1982. The geochemistry of the stable isotopes of silicon. Geochimica et Cosmochimica Acta, 46(8):1449-1458
    Douville E, Bienvenu P, Charlou J L, et al. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5):627-643
    Dunk R M, Mills R A. 2006. The impact of oxic alteration on plume-derived transition metals in ridge flank sediments from the East Pacific Rise. Marine Geology, 229(3-4):133-157
    Dymond J, Eklund W. 1978. A microprobe study of metalliferous sediment components. Earth and Planetary Science Letters, 40(2):243-251
    Fouquet Y, Auclair G, Cambon P, et al. 1988. Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13°N on the East Pacific Rise. Marine Geology, 84(3-4):145-178
    Francheteau J, Ballard R D. 1983. The East Pacific Rise near 21°N, 13°N and 20°S:inferences for along-strike variability of axial processes of the mid-ocean ridge. Earth and Planetary Science Letters, 64(1):93-116
    Gablina I F, Popova E A, Sadchikova T A, et al. 2014. Hydrothermal metasomatic alteration of carbonate bottom sediments in the Ashadze-1 field (13°N Mid-Atlantic Ridge). Geology of Ore Deposits, 56(5):357-379
    Georg R B, Zhu C, Reynolds B C, et al. 2009. Stable silicon isotopes of groundwater, feldspars, and clay coatings in the Navajo Sandstone aquifer, Black Mesa, Arizona, USA. Geochimica et Cosmochimica Acta, 73(8):2229-2241
    German C R, Colley S, Palmer M R, et al. 2002. Hydrothermal plume-particle fluxes at 13°N on the East Pacific Rise. Deep Sea Research Part I:Oceanographic Research Papers, 49(11):1921-1940
    German C R, Klinkhammer G P, Edmond J M, et al. 1990. Hydrothermal scavenging of rare-earth elements in the ocean. Nature, 345(6275):516-518
    Griffin J J, Windom H, Goldberg E D. 1968. The distribution of clay minerals in the world ocean. Deep Sea Research and Oceanographic Abstracts, 15(4):433-459
    Grill E V, Chase R L, MacDonald R D, et al. 1981. A hydrothermal deposit from explorer ridge in the northeast Pacific Ocean. Earth and Planetary Science Letters, 52(1):142-150
    Gurvich E G. 2006. Metalliferous Sediments of the World Ocean:Fundamental Theory of Deep-Sea Hydrothermal Sedimentation. Berlin:Springer, 1-126
    Haskin M A, Haskin L A. 1966. Rare earths in European shales:a redetermination. Science, 154(3748):507-509
    Heath G R, Dymond J. 1977. Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep, and Central Basin, northwest Nazca plate. Geological Society of America Bulletin, 88(5):723-733
    Hein J R, Scholl D W. 1978. Diagenesis and distribution of late Cenozoic volcanic sediment in the southern Bering Sea. Geological Society of America Bulletin, 89(2):197-210
    Hein J R, Yeh H W, Alexander E. 1979. Origin of iron-rich montmorillonite from the manganese nodule belt of the north equatorial Pacific. Clays and Clay Minerals, 27(3):185-194
    Hekinian R, Fouquet Y. 1985. Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13 degrees N. Economic Geology, 80(2):221-249
    Hekinian R, Fevrier M, Avedik F, et al. 1983a. East Pacific Rise near 13°N:geology of new hydrothermal fields. Science, 219(4590):1321-1324
    Hekinian R, Fevrier M, Bischoff J L, et al. 1980. Sulfide deposits from the East Pacific Rise near 21°N. Science, 207(4438):1433-1444
    Hekinian R, Francheteau J, Renard V, et al. 1983b. Intense hydrothermal activity at the axis of the east pacific rise near 13°N:sumbersible witnesses the growth of sulfide chimney. Marine Geophysical Researches, 6(1):1-14
    Hoffert M, Karpoff A M, Schaaf A, et al. 1981. The sedimentary deposits of the tiki basin (south-east pacific) passage from carbonate oozes to "metalliferous sediments". In:Lalou C, ed. Colloques Internationaux du Centre National de la Recherche Scientifique. Paris:CNRS, 289. 101-112
    Honnorez J, Karpoff A M, Trauth-Badaut D. 1983. Sedimentology, mineralogy, and geochemistry of green clay samples from the Galapagos hydrothermal mounds, holes 506, 506C, and 507D, deep sea drilling project leg 70 (preliminary data). In:Honnorez J, Von Herzen R P, eds. Initial Reports of the Deep Sea Drilling Project 70. Washington:U.S. Government Printing Office, 211-224
    Hovan S A. 1995. Late Cenozoic atmospheric circulation intensity and climatic history recorded by eolian deposition in the eastern equatorial Pacific, Leg 138. In:Pisias N G, Mayer L A, Janecek T R, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 138. Ocean Drilling Program:College Station, TX, 615-625
    Huang Jie, Wan Shiming, Xiong Zhifang, et al. 2016. Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 441:871-881
    Kadko D. 1985. Late Cenozoic sedimentation and metal deposition in the North Pacific. Geochimica et Cosmochimica Acta, 49(3):651-661
    Kato Y, Fujinaga K, Nakamura K, et al. 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience, 4(8):535-539
    Klitgord K D, Mammerickx J. 1982. Northern East Pacific Rise:magnetic anomaly and bathymetric framework. Journal of Geophysical Research:Solid Earth, 87(B8):6725-6750
    Lackschewitz K S, Botz R, Garbe-Schönberg D, et al. 2006. Mineralogy and geochemistry of clay samples from active hydrothermal vents off the north coast of Iceland. Marine Geology, 225(1-4):177-190
    Lackschewitz K S, Singer A, Botz R, et al. 2000. Formation and transformation of clay minerals in the hydrothermal deposits of Middle Valley, Juan de Fuca Ridge, ODP Leg 169. Economic Geology, 95(2):361-389
    Lalou C, Brichet E, Hekinian R. 1985. Age dating of sulfide deposits from axial and off-axial structures on the East Pacific Rise near 12°50'N. Earth and Planetary Science Letters, 75(1):59-71
    Leinen M, Prospero J M, Arnold E, et al. 1994. Mineralogy of Aeolian dust reaching the North Pacific Ocean:1. Sampling and analysis. Journal of Geophysical Research:Atmospheres, 99(D10):21017-21023
    Lisitzin A P, Bogdanov Y A, Mudmaa I O, et al. 1976. Metalliferous sediments and their genesis. In:Lisitzin A P, ed. Geological and Geophysical Research in the Southeast Pacific (in Russian). Moscow:Nauka, 289-379
    Liu Hanbin, Jin Guishan, Li Junjie, et al. 2013. Determination of stable isotope composition in uranium geological samples. World Nuclear Geoscience (in Chinese), 30(3):174-179
    Liu Jihua, Shi Xuefa, Chen Lirong, et al. 2005. REE and εNd of clay fractions in sediments from the eastern Pacific Ocean:evidence for clay sources. Science in China Series D:Earth Sciences, 48(5):701-712
    Lyle M, Dymond J, Heath G R. 1977. Copper-nickel-enriched ferromanganese nodules and associated crusts from the Bauer Basin, northwest Nazca plate. Earth and Planetary Science Letters, 35(1):55-64
    McMillen K J, Enkeboll R H, Moore J C, et al. 1982. Sedimentation in different tectonic environments of the Middle America Trench, southern Mexico and Guatemala. Geological Society, London, Special Publications, 10(1):107-119
    McMurtry G M, Yeh H W. 1981. Hydrothermal clay mineral formation of East Pacific Rise and Bauer Basin sediments. Chemical Geology, 32(1-4):189-205
    Melson W G, Thompson G. 1973. Glassy abyssal basalts, Atlantic sea floor near St. Paul's Rocks:petrography and composition of secondary clay minerals. Geological Society of America Bulletin, 84(2):703-716
    Mills R A, Elderfield H. 1995. Hydrothermal activity and the geochemistry of metalliferous sediment. In:Humphris S E, Zierenberg R A, Mullineaux L S, et al, eds. Seafloor Hydrothermal Systems:Physical, Chemical, Biological, and Geological Interactions. Washington D C:American Geophysical Union, 392-407
    Miyoshi Y, Ishibashi J, Shimada K, et al. 2015. Clay minerals in an active hydrothermal field at Iheya-North-Knoll, Okinawa trough. Resource Geology, 65(4):346-360
    Murnane R, Clague D A. 1983. Nontronite from a low-temperature hydrothermal system on the Juan de Fuca Ridge. Earth and Planetary Science Letters, 65(2):343-352
    Opfergelt S, Cardinal D, André L, et al. 2010. Variations of δ30Si and Ge/Si with weathering and biogenic input in tropical basaltic ash soils under monoculture. Geochimica et Cosmochimica Acta, 74(1):225-240
    Opfergelt S, de Bournonville G, Cardinal D, et al. 2009. Impact of soil weathering degree on silicon isotopic fractionation during adsorption onto iron oxides in basaltic ash soils, Cameroon. Geochimica et Cosmochimica Acta, 73(24):7226-7240
    Percival J B, Ames D E. 1993. Clay mineralogy of active hydrothermal chimneys and an associated mound, middle valley, northern Juan de Fuca ridge. The Canadian Mineralogist, 31(4):957-971
    Peter J M, Scott S D. 1988. Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California. The Canadian Mineralogist, 26(3):567-587
    Pichevin L E, Reynolds B C, Ganeshram R S, et al. 2009. Enhanced carbon pump inferred from relaxation of nutrient limitation in the glacial ocean. Nature, 459(7250):1114-1117
    Piper D Z. 1974. Rare earth elements in the sedimentary cycle:a summary. Chemical Geology, 14(4):285-304
    Piper D Z, Heath G R. 1989. Hydrogenous sediment. In:Winterer E L, Hussong D M, Decker R W, eds. The Eastern Pacific Ocean and Hawaii. the Geology of North America, Vol. N. Boulder, Colorado:Geological Society of America, 337-345
    Rateev M A, Timofeev P P, Rengarten N V. 1980. Minerals of the clay fraction in Pliocene-Quaternary sediments of the east equatorial Pacific. In:Rosendahl B R, Hekinian R, Natland J H, et al, eds. Init Repts DSDP 54, Washington:U.S. Government Printing Office, 307-318
    Savage P S, Georg R B, Williams H M, et al. 2013. The silicon isotope composition of the upper continental crust. Geochimica et Cosmochimica Acta, 109:384-399
    Scheidegger K F, Stakes D S. 1977. Mineralogy, chemistry and crystallization sequence of clay minerals in altered tholeiitic basalts from the Peru Trench. Earth and Planetary Science Letters, 36(3):413-422
    Schumann D, Nagel U. 1982. Appendix I. X-ray mineralogical analysis. In:Initial Reports of the Deep Sea Drilling Project 66. Washington:U.S. Government Printing Office, 853-857
    Seyfried Jr W E, Shanks Ⅲ W C, Dibble Jr W E. 1978. Clay mineral formation in DSDP Leg 34 basalt. Earth and Planetary Science Letters, 41(3):265-276
    Shao Hebin, Yang Shouye, Wang Quan, et al. 2015. Discriminating hydrothermal and terrigenous clays in the Okinawa Trough, East China Sea:evidences from mineralogy and geochemistry. Chemical Geology, 398:85-96
    Sharaskin A Y, Migdisov A A, Rostschina I A, et al. 1983. Major-and trace-element chemistry of hole 504B basalts and their alteration products (costa Rica rift, deep sea drilling project leg 70). In:Cann J R, Langseth M G, Honnorez J, et al, eds. Initial Reports Deep Sea Drilling Proiect 69. Washington:U.S. Government Printing Office, 775-789
    Sherrell R M, Field M P, Ravizza G. 1999. Uptake and fractionation of rare earth elements on hydrothermal plume particles at 9°45'N, East Pacific Rise. Geochimica et Cosmochimica Acta, 63(11-12):1709-1722
    Varela D E, Pride C J, Brzezinski M A. 2004. Biological fractionation of silicon isotopes in Southern Ocean surface waters. Global Biogeochemical Cycles, 18(1):GB1047
    Wan Shiming, Li Anchun, Clift P D, et al. 2007. Development of the East Asian monsoon:mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3-4):561-582
    Wan Shiming, Li Anchun, Clift P D, et al. 2010. Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3 Ma. Marine Geology, 278(1-4):115-121
    Wang Xiaoyuan, Yin Xuebo, Zeng Zhigang, et al. 2014. High efficiency determination of trace elements in the geological samples. Journal of Chinese Mass Spectrometry Society (in Chinese), 35(1):24-31
    Wu Li. 2012. Study on the metalliferous sediments near 13°N East Pacific Rise (in Chinese)[dissertation]. Qingdao:Institute of Oceanology Chinese Academy of Sciences
    Wu Shiying, Ding Tiping, Meng Xianwei, et al. 1997. Determination and geological implication of O-Si isotope of the sediment core in the CC area, the Pacific Ocean. Chinese Science Bulletin, 42(17):1462-1465
    Xue Fayu. 2003. Geochemical study of the sediments from two cores in the hydrothermal field on the East Pacific Rise (in Chinese)[dissertation]. Qingdao:Ocean University of China
    Yu Shaoxiong. 2010. Total organic carbon and nitrogen from metalliferous sediment on the flank of the East Pacific Rise 13°N (in Chinese)[dissertation]. Qingdao:Institute of Oceanology Chinese Academy of Sciences
    Yu Zenghui, Gao Yuhua, Zhai Shikui, et al. 2012. Resolving the hydrothermal signature by sequential leaching studies of sediments from the middle of the Okinawa Trough. Science China Earth Sciences, 55(4):665-674
    Yuan Chunwei, Zeng Zhigang, Yin Xuebo et al. 2007. Sediment geochemistry from 13°N East Pacific Rise hydrothermal field. Marine Geology & Quaternary Geology (in Chinese), 27(4):45-53
    Zhang Guoliang, Zeng Zhigang, Yin Xuebo, et al. 2008. Periodical mixing of MORB magmas near East Pacific Rise 13°N:evidence from modeling and zoned plagioclase phenocrysts. Science in China Series D:Earth Sciences, 51(12):1786-1801
    Ziegler K, Chadwick O A, Brzezinski M A, et al. 2005. Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochimica et Cosmochimica Acta, 69(19):4597-4610
    Zierenberg R A, Shanks Ⅲ W C. 1994. Sediment alteration associated with massive sulfide formation in Escanaba Trough, Gorda Ridge:the importance of seawater mixing and magnesium metasomatism. In:Morton J L, Zierenberg R A, Reiss C A, eds. Geologic, Hydrothermal, and Biologic Studies at Escanaba Trough, Gorda Ridge, Offshore Northern California. Commonwealth of Virginia:US Geological Survey, 2022:257-277
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (810) PDF downloads(393) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return