Sort By:
Relevance
Published
Display per page:
10
20
30
50
Miocene paleoenvironmental evolution based on benthic foraminiferal assemblages in the Lufeng Sag, northern South China Sea
XUE Liyuan, DING Xuan, PEI Renjie, WAN Xiaoqiao
2019, 38(3): 124-137. doi: 10.1007/s13131-019-1405-7
Keywords: South China Sea, Lufeng Sag, Miocene, benthic foraminiferal assemblage, total organic carbon, shelf paleoenvironment
The Miocene epoch marks the most crucial period during the Cenozoic cooling trend, characterized by the Middle Miocene Climatic Optimum (MMCO) and a series of short-lived cooling events (Miocene isotope events). To understand the paleoenvironmental evolution along the shallow water shelf in the South China Sea during the Miocene, the benthic foraminiferal assemblage and total organic carbon content (TOC) were analyzed at Hole LF 14 located in the Lufeng Sag, northern South China Sea. Three benthic foraminiferal assemblages (e.g., the Uvigerina spp. assemblage, the Cibicides spp. assemblage, and the Cibicidoides spp. assemblage), corresponding to different watermass conditions, were recognized based on Q-mode factor analysis. Early studies suggested that Hole LF14 was deposited under semienclosed bay, middle to outer shelf or even upper bathyal environment during~18.7-4.53 Ma. The dominant Uvigerina spp. assemblage was characterized by low diversity and shallow infaunal to infaunal species, indicating a warm, low-oxygenation and eutrophic conditions since the Early Miocene to MMCO (~18.7-14.24 Ma). An abrupt sea level drop and significant faunal changes were recorded during 14.24-13.41 Ma, suggesting development of the East Antarctic Ice Sheets, which resulted in a drop of sea level and change in benthic foraminiferal assemblages along the shallow water shelf. Beyond the Uvigerina spp. assemblage, the Cibicides spp. assemblage became important during the middle-late Middle Miocene (14.24-11.54 Ma). This assemblage was dominated by epifaunal species with relative high diversity, suggesting high-energy, high-oxygenation and oligotrophic conditions with episodic supply of organic food. The dominant Cibicidoides spp. assemblage with high diversity, indicates a mesotrophic conditions with relative high-oxygen content during the Late Miocene to Pliocene (11.54-4.53 Ma). The appearance and continuous occurrence of Ammonia spp. and Pseudorotalia spp. since 10.02 Ma, may reflect the influence of the Kuroshio Current.
Characteristics of porosity and permeability layer of fossil Halimeda reef mineral rock of Miocene in the Xisha Islands and its genetic model
XU Hong, ZHU Yurui, EBERLI G. P., LUO Wei, ZHAO Xinwei, CAI Ying, LIU Xinyu, YAN Guijing, ZHANG Bolin, WEI Kai, CUI Ruyong
2015, 34(4): 74-83. doi: 10.1007/s13131-015-0638-3
Keywords: Xisha Islands, Miocene, fossil Halimeda, segment dolostone, reservoir evolution model
Halimeda is one of the major reef-building algas in the middle Miocene of Xisha, and one of the significant reefbuilding algas in the algal reef oil and gas field of the South China Sea. However, there have been few reports regarding the characteristics of mineral rocks, reservoir porosity and permeability layers, and sedimentationdiagenetic- evolution of fossil Halimeda systems. The present paper briefly introduces the relevant studies on chlorophyta Halimeda and the research status of oil and gas exploration. Through the 1 043 m core of the Xichen- 1 well, we studied the characteristics of the mineral rocks and porosity and permeability of the middle Miocene Halimeda of the Yongle Atoll, identified and described the segments of fossil Halimeda, and pointed out that most of the segment slides are vertical sections in ovular, irregular or long strips. The overwhelming majority of these fossil Halimeda found and studied are vertical sections instead of cross sections. In this paper, knowledge regarding the cross sections of fossil Halimeda is reported and proven to be similar with the microscopic characteristics of modern living Halimeda; fossil Halimeda are buried in superposition; it is shown that there are different structures present, including typical bio-segment structure, and due to its feature of coexisting with red alga, tying structure, twining structure and encrusting structure are all present; and finally, it is suggested to classify the fossil Halimeda into segment algal reef dolomites. In addition, all of the studied intervals are moderately dolomitized. Secondary microcrystalline-dolosparite dominates the original aragonite raphide zones, and aphanitic-micrite dolomite plays the leading role in the cortexes and medullas; in the aragonite raphide zones between medulla and cysts, secondary dissolved pores and intercrystalline pores are formed inside the segments, and algal frame holes are formed between segments; therefore, a pore space network system (dissolved pores + intragranular dissolved pores—intercrystalline pores + algal frame holes) is established. Segment Halimeda dolomite has a porosity of 16.2%-46.1%, a permeability of 0.203×10-3-2 641×10-3 μm2, and a throat radius of 23.42-90.43 μm, therefore it is shown to be a good oil and gas reservoir. For the reasons mentioned above, we suggest building the neogene organic reef-modern reef sedimentation-diagenetic-evolution models for the Xisha Islands.
Sediment source and environment evolution in Taiwan Island during the Eocene–Miocene
Yuanli Hou, Weilin Zhu, Peijun Qiao, Chi-Yue Huang, Yuchi Cui, Xianbo Meng
2021, 40(2): 114-122. doi: 10.1007/s13131-021-1756-8  Published:2021-04-02
Keywords: Taiwan Island, sedimentary source, sandstone, zircon, sedimentary environment
Taiwan Island’s outcropping strata can provide important insights into the sedimentary environment and source development of the southeast China margin. This research is based on the Eocene–Miocene strata of the Tsukeng area in the central Western Foothills, northeast shoreline of Taiwan Island and two sites of the East China Sea Shelf Basin (ECSSB), using petrology and detrital zircon U-Pb age for the analysis. Results show that central and northeast Taiwan Island experienced a transformation from continental to marine facies during the Eocene–Miocene, and the sandstone maturity changed with time. Source analysis shows that sediments from the Eocene–early Oligocene strata mainly originated from near-source Mesozoic rocks, whose zircon age is consistent with the igneous rock in the surrounding area and coastal Cathaysia, showing 120 Ma and 230 Ma peaks in the age spectrum diagram. Since the late Oligocene, peaks of 900 Ma and 1 800 Ma are seen, indicating that deposition of matter from the old block began. The sediments could be a mixture of the surrounding Mesozoic volcanic and fewer pre-Cambrian rocks sourced from the coastal river and sporadic old basement in the ECSSB instead of long-distance transportation.
Characteristics and origins of middle Miocene mounds and channels in the northern South China Sea
Yufeng Li, Gongcheng Zhang, Renhai Pu, Hongjun Qu, Huailei Shen, Xueqin Zhao
2021, 40(2): 65-80. doi: 10.1007/s13131-021-1759-5  Published:2021-04-02
Keywords: South China Sea, middle Miocene, channels and mounds, contour currents
Numerous elongated mounds and channels were found at the top of the middle Miocene strata using 2D/3D seismic data in the Liwan Sag of Zhujiang River Mouth Basin (ZRMB) and the Beijiao Sag of Qiongdongnan Basin (QDNB). They occur at intervals and are rarely revealed by drilling wells in the deepwater areas. Origins of the mounds and channels are controversial and poorly understood. Based on an integrated analysis of the seismic attribute, palaeotectonics and palaeogeography, and drilling well encountering a mound, research results show that these mounds are dominantly distributed on the depression centres and/or slopes of the Liwan and Beijiao sags and developed in a bathyal sedimentary environment. In the Liwan and Beijiao sags, the mounds between channels (sub) parallel to one another are 1.0–1.5 km and 1.5–2.0 km wide, 150–300 m and 150–200 m high, and extend straightly from west to east for 5–15 km and 8–20 km, respectively. Mounds and channels in the Liwan Sag are parallel with the regional slope. Mounds and channels in the Beijiao Sag, however, are at a small angle to the regional slope. According to internal geometry, texture and external morphology of mounds, the mounds in Beijiao Sag are divided into weak amplitude parallel reflections (mound type I), blank or chaotic reflections (mound type II), and internal mounded reflections (mound type III). The mounds in Liwan Sag, however, have the sole type, i.e., mound type I. Mound type I originates from the incision of bottom currents and/or gravity flows. Mound type II results from gravity-driven sediments such as turbidite. Mound type III is a result of deposition and incision of bottom currents simultaneously. The channels with high amplitude between mounds in the Beijiao and Liwan sags are a result of gravity-flow sediments and it is suggested they are filled by sandstone. Whereas channels with low-mediate amplitudes are filled by bottom-current sediments only in the Beijiao Sag, where they are dominantly composed of mudstone. This study provides new insights into the origins of the mounds and channels worldwide.
The influence of organic sources and environments on source rock deposition during the periods of Cretaceous–Eocene and Oligocene–Miocene, northern Kalimantan
Lei Lan, Youchuan Li, Zhigang Zhao, Shuchun Yang, Qing Lin, Weilai Zhang
2023, 42(3): 54-64. doi: 10.1007/s13131-022-2080-7  Published:2023-03-25
Keywords: biomarkers, source rocks, palynological records, palaeoclimate, South China Sea
The sedimentary system of Kalimantan has undergone significant development since the Oligocene. Previous research have largely ignored the capacity of the Cretaceous–Eocene sediments to produce hydrocarbons, focusing instead primarily on the Oligocene–Miocene coal as the principal source rocks. Shales and coals from the outcrops in the northern margin of Kalimantan were analyzed with palynological and geochemical methods to characterize the palaeoenvironmental and palaeoecological differences between the Cretaceous–Eocene and the Oligocene–Miocene samples. The high proportion of Cheirolepidoaceae, Schizaeoisporites and Ephedripites in the pollen assemblage from the Cretaceous–Eocene outcrops reflects an arid tropical/subtropical climate. The relatively low abundances of gymnosperm-derived biomarkers including isopimarane, β-phyllocladane, β-kaurane, suggest the gymnosperm features in flora. High C27/C29 ααα 20R sterane ratios, (C19–C29) tricyclic terpanes/C30 αβ hopane and extremely low oleanane/C30 αβ hopane, bicadinane T/C30 αβ hopane, and diterpenoid abundance indicate that there was a dominance of algae relative to higher plants in the organic matter. The gymnosperm-derived biomarkers, including isopimarane, β-phyllocladane, β-kaurane, suggest that palaeovegetation during this period was dominated by gymnosperms. The saline and reducing conditions in the bathyal and abysmal sea, evidenced by rather low Pr/Ph and high Gammarerane index, are beneficial for the preservation of hydrogen-rich organic matter. It is presumed that the Cretaceous–Eocene shales had great hydrocarbon generation potential in the southern South China Sea. During the period of Oligocene to Miocene in the Zengmu Basin and the Baram-Sabah Basin, the climate changed to a dominant humid and warm condition, which is corroborated by abundant pollen of Florschuetzia and Magnastriatites hawardi. Low C27/C29 ααα 20R sterane ratios, (C19–C29) tricyclic terpanes/C30 αβ hopane, and high oleanane/C30 αβ hopane, bicadinane T/C30 αβ hopane suggest that the palaeovegetation was dominated by angiosperms including the mangrove plants. The extremely abundant higher plants provide ample terrigenous organic matter for the formation of coal-measures in delta facies. The low gammacerane index and high Pr/Ph indicate the fresh and sub-oxic water in delta-neritic-abysmal faces, which is not beneficial for the accumulation of hydrogen-rich organic matter. Thus, the Oligocene–Miocene marine argillaceous rocks can be potential sources of natural gas.
Seismic analysis of early-mid Miocene carbonate platform in the southern Qiongdongnan Basin, South China Sea
WU Xiaochuan, PU Renhai, CHEN Ying, QU Hongjun, SHEN Huailei
2018, 37(2): 54-65. doi: 10.1007/s13131-017-1128-6
Keywords: forward model, carbonate rock, thickness, facies distribution, Qiongdongnan Basin
The southern uplift of the Qiongdongnan Basin is a deepwater area in which no wells have beens drilled. The Miocene-Quaternary strata in the Xisha Islands, which are located 40-100 km to the south, are composed of carbonate reef formations. Paleotectonic and paleogeographic analyses of the basin suggest that the southern uplift experienced favorable geological conditions for the development of carbonate reefs during the Miocene. The high-impedance carbonates have high amplitudes and low frequencies on seismic profiles. The reefs are distributed on paleotectonic highs and are thicker than the contemporaneous formations. A forward model of the variation in carbonate thickness based on lithological and velocity information from wells in nearby regions can simulate the seismic response of carbonates with different thicknesses. We identified several important controlling points for determining the thickness of carbonates from seismic profiles, including the pinchout point, the λ/4 thickness point, and the λ/2 thickness point. We depict a carbonate thickness map in the deepwater area of the southern Qiongdongnan Basin based on this model. The carbonate thickness map, the paleotectonic and paleogeographic background, and the seismic response characteristics of reefs suggest that the carbonates that developed on the southern uplift of the Qiongdongnan Basin during the Miocene were mainly an isolated carbonate platform peninsula and ramp deposits. It consisted of gentle ramp platform, steep slope platform, platform depression, gravity flow, and reef bank facies.
Geochemical characteristics of Oligocene-Miocene sediments from the deepwater area of the northern South China Sea and their provenance implications
CHEN Shuhui, QIAO Peijun, ZHANG Houhe, XIE Xiaojun, CUI Yuchi, SHAO Lei
2018, 37(2): 35-43. doi: 10.1007/s13131-017-1127-7
Keywords: geochemistry, zircon U-Pb age, provenance, South China Sea, Baiyun deepwater area
Geochemical and detrital zircon U-Pb dating data for drilled sediments from the Baiyun deepwater area of the northern South China Sea demonstrate a change of sedimentary sources from the Oligocene to the Miocene. Zircon ages of the pre-rift Eocene sequences are dominated by Yanshanian ages with various peak values (110-115 Ma for U1435 and L21; 150 Ma for H1), indicating local sediment supply from the pre-existing Mesozoic magmatic belt. For the Oligocene sediments in the northern part of the basin, the rare earth elements show different distribution characteristics, indicating sediment supply from the paleo-Zhujiang River (Pearl River), as also confirmed by the multimodal zircon age spectra of the Lower Oligocene strata in Well X28. By contrast, a positive Eu anomaly characterizes sediments from the western and southern parts of the basin, indicating potential provenances from intermediate to basic volcanic rock materials. The Baiyun Movement at the end of the Oligocene contributed to a large-scale subsidence in the deepwater area and also a northward retreat of continental shelf break, leading to deepening depositional environment in the basin. As a result, all the detrital zircon ages of the Upper Oligocene strata from Wells X28, L13, and L21 share a similar distribution, implying the possible control of a common source like the Zhujiang River. During the Miocene, whereas sediments in the northern area were mainly sourced from the Zhujiang River Delta, and those in the southern deepwater area continued to be affected by basic volcanic activities, the Dongsha Uplift could have contributed as the main source to the eastern area.
Late Eocene–early Miocene provenance evolution of the Crocker Fan in the southern South China Sea
Yuchi Cui, Lei Shao, Wu Tang, Peijun Qiao, Goh Thian Lai, Yongjian Yao
2023, 42(3): 215-226. doi: 10.1007/s13131-023-2148-z  Published:2023-03-25
Keywords: source-to-sink analysis, zircon U-Pb age, submarine fan, Malay Peninsula, southern South China Sea
There are many large-scale Cenozoic sedimentary basins with plentiful river deltas, deep-water fans and carbonate platforms in the southern South China Sea. The Crocker Fan was deposited as a typical submarine fan during the late Eocene–early Miocene, and stretches extensively across the entire Sarawak–Sabah of the northern Borneo area. However, systematic analyses are still lacking regarding its sediment composition and potential source suppliers. No consensus has been reached yet on the provenance evolution and sedimentary infilling processes, which seriously impeded the oil-and-gas exploration undertakings. By combining with sedimentary-facies identification, heavy mineral assemblages, elemental geochemistry and detrital zircon U-Pb dating, this paper aims to generalize an integrated analysis on the potential provenance terranes and restore source-to-sink pathways of the Crocker Fan. In general, the Crocker Fan was initially formed over the Cretaceous–lower/middle Eocene Rajang Group by an angular Rajang unconformity. The continual southward subduction of the proto-South China Sea resulted in magmatic activities and subsequent regional deformation and thrusting along the Lupar Line in the northern Borneo. The lowermost Crocker sequence is featured by a thick conglomerate layer sourced from in-situ or adjacent paleo-uplifts. From the late Eocene to the early Miocene, the Crocker Fan was constantly delivered with voluminous detritus from the Malay Peninsula of the western Sundaland. The Zengmu Basin was widely deposited with delta plain and neritic facies sediments, while the Brunei-Sabah Basin, to the farther east, was ubiquitously characterized by turbiditic sequences. The Crocker Fan successions are overall thick layers of modest-grained sandstones, which formed high-quality reservoirs in the southern South China Sea region.
Aliphatic biomarker signatures of early Oligocene−early Miocene source rocks in the central Qiongdongnan Basin: Source analyses of organic matter
Min Xu, Dujie Hou, Xiong Cheng, Jun Gan, Xinde Xu, Gang Liang, Wenjing Ding
2023, 42(3): 1-18. doi: 10.1007/s13131-022-2082-5  Published:2023-03-25
Keywords: aliphatic biomarkers, early Oligocene−early Miocene, organic matter sources, palaeovegetation reconstruction, Qiongdongnan Basin
The geochemical signatures of fifty-four rock samples and three supplementary drill stem test (DST) oils from the Yacheng-Sanya formations in the central Qiongdongnan Basin (CQB) were analysed. Reconstruction of the early Oligocene−early Miocene (36–16 Ma) palaeovegetation and source analyses of organic matter (OM) were conducted using aliphatic biomarkers in ancient sediments and DST oils. Both the interpreted aquatic and terrigenous OM contributed to the CQB source rocks (SRs) but had varying relative proportions. The four distribution patterns derived from n-alkanes, terpanes, and steranes are representative of four OM composition models of the Yacheng-Sanya SRs, including model A, model B, model C, and model D, which were classified based on the increasing contribution from terrigenous OM relative to aquatic OM. Some terrigenous higher plant-derived biomarkers, including oleanane, des-A-oleanane, C29 ααα 20R sterane, bicadinanes, the C19/(C19 + C23) tricyclic terpane ratio, and other n-alkane-derived ratios suggest that angiosperms had increased proportions in the palaeoflora from early Oligocene to early Miocene, and the bloom of terrigenous higher plants was observed during deposition of upper Lingshui Formation to lower Sanya Formation. These findings are consistent with the incremental total organic carbon and free hydrocarbons + potential hydrocarbons (S1 + S2) in the lower Lingshui-lower Sanya strata with a significant enrichment of OM in the E3l1-N1s2 shales. The maturity- and environment-sensitive aliphatic parameters of the CQB SRs and DST oils suggest that all the samples have predominantly reached their early oil-generation windows but have not exceeded the peak oil windows, except for some immature Sanya Formation shales. In addition, most of the OM in the analysed samples was characterised by mixed OM contributions under anoxic to sub-anoxic conditions. Furthermore, terrestrial-dominant SRs were interpreted to have developed mainly in the Lingshui-Sanya formations and were deposited in sub-oxic to oxic environments, compared to the anoxic to sub-anoxic conditions of the Yacheng Formation.
Biomarkers reveal the terrigenous organic matter enrichment in the late Oligocene−early Miocene marine shales in the Ying-Qiong Basin, South China Sea
Wenjing Ding, Youchuan Li, Lan Lei, Li Li, Shuchun Yang, Yongcai Yang, Dujie Hou
2023, 42(3): 31-53. doi: 10.1007/s13131-022-2081-6  Published:2023-03-25
Keywords: total organic carbon, higher plant-derived biomarkers, tropical/subtropical plants, East Asian monsoonal climate
The increase of total organic carbon content of the late Oligocene−early Miocene terrigenously-dominated marine shales in the shallower depth intervals was reported in the Ying-Qiong Basin, South China Sea. The organic enriched lower Sanya Formation shales (early Miocene) have biomarker characteristics of tropical/subtropical plants, with abundant high molecular weight n-alkanes, angiosperm-derived oleanane, rearranged oleananes I, II, II, tricyclic/tetracyclic terpanes including des-A-oleanane, X, *, Y, Z, Z1 and bicadinanes W, T, T1, R. The biomarker characteristics are suggestive of larger influx of the dominant tropical/subtropical angiosperms in flora under a warming and more humid climate during depositions of the lower Sanya Formation (early Miocene) than the older Lingshui Formation (late Oligocene). The tropical/subtropical angiosperm input was thought as the prime control of terrigenous organic matter enrichment relative to the redox condition, and the coeval sea level changes and seafloor spreading in the South China Sea. Enrichment of the terrigenous organic matter in the early Miocene shales is likely in association with the coeval peak East Asian summer monsoon intensity in the South China Sea.
  • First
  • Prev
  • 1
  • 2
  • 3
  • 4
  • Last
  • Total:4
  • To
  • Go