Sort By:
Relevance
Published
Display per page:
10
20
30
50
Identification of SNP markers correlated with the tolerance of low-salinity challenge in swimming crab (Portunus trituberculatus)
Feng Yanyan, Zhang Dening, Lv Jianjian, Gao Baoquan, Li Jian, Liu Ping
2019, 38(8): 41-47. doi: 10.1007/s13131-019-1428-0
Keywords: Portunus trituberculatus, low salinity, time-of-flight mass spectrometry, single nucleotide polymorphism, SNP
Water salinity condition is an important factor for artificial propagation of the swimming crab (Portunus trituberculatus). Low salinity (LS)-resistant strains are preferred by crab industries. Single nucleotide polymorphism (SNP), the third generation of molecular markers, can be utilized in the breeding of LS-resistant species of P. trituberculatus. Our earlier study identified 615 genes differentially expressed in low-salinity stress compared to the controls. Although thousands of SNP loci have been found, it is hard to identify a SNP marker in correlation with a desired trait. In this study, time-of-flight mass spectrometry (TOF-MS), as an efficient method to select SNPs for the tolerance of LS challenge, was utilized for SNP typing. Fifty gene segments were amplified based on comparative transcriptomics in our earlier study, a total of 18 511 bp DNA fragments were amplified, and eighty-five SNP markers were found. The frequency of the SNPs was estimated to be 0.46 per 100 base pairs of DNA sequences. The rate of the conversion mutation was 81%, while the transversion mutation was 19%. The mutation rate of the G/T (C/A), A/T and G/C was 26%, 12% and 7%, respectively. Eight SNP markers were found to significantly correlate with the adaption of low salinity. Of the eight SNP markers, three linked-SNPs were found in the cuticle proportion gene, and another three SNPs were found in three new genes, and the rest two were found in aquaporin gene and chloride channel gene. The development of these SNP markers found in our study could be primarily used for breeding LS-resistant strains of P. trituberculatus.
Development of SNP parentage assignment techniques in the yellowfin seabream Acanthopagrus latus
Hongbo Zhao, Liangmin Huang, Jing Zhang, Songyuan You, Qingmin Zeng, Xiande Liu
2024, 43(2): 151-155. doi: 10.1007/s13131-023-2221-7  Published:2024-02-01
Keywords: Acanthopagrus latus, parentage assignment, SNP, Genome re-sequencing
Acanthopagrus latus is an essential aquaculture species on the south coast of China. However, there is a lack of systematic breeding of A. latus, which considerably limits the sustainable development of A. latus. As a result, genetic improvements are urgently needed to breed new strains of A. latus with rapid growth and strong resistance to disease. During selective breeding, it is necessary to estimate the genetic parameters of the target trait, which in turn depends on an accurate disentangled pedigree for the selective population. Therefore, it is necessary to establish the parentage assignment technique for A. latus. In this study, 95 individuals selected from their parents and their 14 families were used as experimental material. SNPs were developed by genome re-sequencing, and highly polymorphic SNPs were screened on the basis of optimized filtering parameters. A total of 14 392 738 SNPs were discovered and 205 SNPs were selected for parentage assignment using the CERVUS software. In the model where the gender of the parents is known, the assignment success rate is 98.61% for the male parent, 97.22% for the female parent, and 95.83% for the parent pair. In the model where the gender of the parents is unknown, the assignment success rate is 100% for a single parent and 90.28% for the parent pair. The results of this study were expected to serve as a reference for the breeding of new varieties of A.latus.
Population differentiation in the dominant species (Ulva prolifera) of green tide in coastal waters of China
Hongbin Han, Yan Li, Xiaojun Ma, Wei Song, Zongling Wang, Mingzhu Fu, Xuelei Zhang
2022, 41(11): 108-114. doi: 10.1007/s13131-022-1985-5  Published:2022-11-01
Keywords: Ulva prolifera, green tide, dominant species, population differentiation, Qinhuangdao
Since 2015, green tides with Ulva prolifera as the dominant species in the Qinhuangdao coastal waters have continued to occur. In this study, the relationship between green tides in Qinhuangdao and the Yellow Sea (setting sites in Rudong and Qingdao) was evaluated by genetic analyses of U. prolifera. Single nucleotide polymorphism (SNP) markers were used to analyze genetic diversity and genetic relationships among groups. Genetic differentiation was lower among floating U. prolifera populations in Rudong and Qingdao than in Qinhuangdao. The floating U. prolifera population had higher genetic diversity and polymorphism levels in Qingdao and Rudong than in Qinhuangdao. Physiological experiments showed that the growth rate and net buoyancy of floating U. prolifera were highest in Qinhuangdao and Qingdao, respectively, under the same environmental conditions (temperature and light). Overall, these findings showed that U. prolifera populations in the Qinhuangdao and Yellow Sea green tides (Rudong and Qingdao) differ significantly at the molecular and physiological levels. Therefore, the Qinhuangdao green tide is not correlated with the Yellow Sea green tide and has a different origin and development mode. This study provides insight into the mechanism underlying green tide blooms in coastal waters of China.
Characterization of four hemocyanin isoforms in Litopenaeus vannamei
XU Jingxiang, RUAN Lingwei, LI Zhen, YU Xiaoman, LI Sedong, SHI Hong, XU Xun
2015, 34(2): 36-44. doi: 10.1007/s13131-015-0588-9
Keywords: hemocyanin, SNPs, isoforms, Litopenaeus vannamei, WSSV
In this study, the gene encoding hemocyanin subunit L, LvHcL, was cloned from Litopenaeus vannamei and the genomic organization was characterized. This gene was diverse with many SNPs and also had at least four isoforms, while one of them (LvHcL4) only had two exons and the exon2 was missed. Transcription analysis showed that these isoforms of LvHcL were up-regulated after WSSV challenge in WSSV-resistant shrimp, while the transcriptions were decreased constantly in WSSV-susceptible shrimp. It is suggested that the hemocyanin had rich polymorphism and was involved in the antiviral response. These results could extend our previous findings and provide insights into the immune feature of hemocyanin, which would be helpful for further studies aimed at antiviral mechanism in inver-tebrate.