Volume 42 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
Wenjing Ding, Youchuan Li, Lan Lei, Li Li, Shuchun Yang, Yongcai Yang, Dujie Hou. Biomarkers reveal the terrigenous organic matter enrichment in the late Oligocene−early Miocene marine shales in the Ying-Qiong Basin, South China Sea[J]. Acta Oceanologica Sinica, 2023, 42(3): 31-53. doi: 10.1007/s13131-022-2081-6
Citation: Wenjing Ding, Youchuan Li, Lan Lei, Li Li, Shuchun Yang, Yongcai Yang, Dujie Hou. Biomarkers reveal the terrigenous organic matter enrichment in the late Oligocene−early Miocene marine shales in the Ying-Qiong Basin, South China Sea[J]. Acta Oceanologica Sinica, 2023, 42(3): 31-53. doi: 10.1007/s13131-022-2081-6

Biomarkers reveal the terrigenous organic matter enrichment in the late Oligocene−early Miocene marine shales in the Ying-Qiong Basin, South China Sea

doi: 10.1007/s13131-022-2081-6
Funds:  The National Natural Science Foundation of China under contract No. 42202184; the National Science and Technology Major Project under contract No. 2016ZX05026.
More Information
  • Corresponding author: E-mail: wenjing.ding@hdr.mq.edu.au
  • Received Date: 2022-02-22
  • Accepted Date: 2022-08-28
  • Available Online: 2022-10-10
  • Publish Date: 2023-03-25
  • The increase of total organic carbon content of the late Oligocene−early Miocene terrigenously-dominated marine shales in the shallower depth intervals was reported in the Ying-Qiong Basin, South China Sea. The organic enriched lower Sanya Formation shales (early Miocene) have biomarker characteristics of tropical/subtropical plants, with abundant high molecular weight n-alkanes, angiosperm-derived oleanane, rearranged oleananes I, II, II, tricyclic/tetracyclic terpanes including des-A-oleanane, X, *, Y, Z, Z1 and bicadinanes W, T, T1, R. The biomarker characteristics are suggestive of larger influx of the dominant tropical/subtropical angiosperms in flora under a warming and more humid climate during depositions of the lower Sanya Formation (early Miocene) than the older Lingshui Formation (late Oligocene). The tropical/subtropical angiosperm input was thought as the prime control of terrigenous organic matter enrichment relative to the redox condition, and the coeval sea level changes and seafloor spreading in the South China Sea. Enrichment of the terrigenous organic matter in the early Miocene shales is likely in association with the coeval peak East Asian summer monsoon intensity in the South China Sea.
  • 1)AGI = angiosperm/gymnosperm index = [m/z 191 (des-A-oleanane+des-A-lupane+des-A-ursane+oleanane)]/[m/z 191(isopimarane)] × [m/z 123 (isopimarane)]/[m/z 123 (8β(H)-labdane+19-nor-isopimarane+rimuane+C19-17-nortetracyclane+ent-beyerane+isopimarane+16β(H)-phyllocladane+ent-16β(H)-kaurane)]. Reference is Killops S D, Raine J I, Woolhouse A D, et al. 1995. Chemostratigraphic evidence of higher-plant evolution in the Taranaki Basin, New Zealand. Organic Geochemistry, 23(5): 429–445.
  • loading
  • Ahmed M, George S C. 2004. Changes in the molecular composition of crude oils during their preparation for GC and GC-MS analyses. Organic Geochemistry 35(2): 137–155
    Akinlua A, Torto N. 2011. Geochemical evaluation of Niger Delta sedimentary organic rocks: a new insight. International Journal of Earth Sciences, 100(6): 1401–1411. doi: 10.1007/s00531-010-0544-z
    Albrecht P, Vandenbroucke M, Mandengué M. 1976. Geochemical studies on the organic matter from the Douala Basin (Cameroon)—I. Evolution of the extractable organic matter and the formation of petroleum. Geochimica et Cosmochimica Acta, 40(7): 791–799. doi: 10.1016/0016-7037(76)90031-4
    An Zhisheng, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833): 62–66. doi: 10.1038/35075035
    Armanios C, Alexander R, Kagi R I, et al. 1994. Fractionation of sedimentary higher-plant derived pentacyclic triterpanes using molecular sieves. Organic Geochemistry, 21(5): 531–543. doi: 10.1016/0146-6380(94)90104-X
    Baas M, Pancost R, Van Geel B, et al. 2000. A comparative study of lipids in Sphagnum species. Organic Geochemistry, 31(6): 535–541. doi: 10.1016/S0146-6380(00)00037-1
    Bande M B, Prakash U. 1986. The tertiary flora of Southeast Asia with remarks on its palaeoenvironment and phytogeography of the Indo-Malayan region. Review of Palaeobotany and Palynology, 49(3–4): 203–233
    Boot C S, Ettwein V J, Maslin M A, et al. 2006. A 35, 000 year record of terrigenous and marine lipids in Amazon Fan sediments. Organic Geochemistry, 37(2): 208–219. doi: 10.1016/j.orggeochem.2005.09.002
    Bourbonniere R A, Meyers P A. 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41(2): 352–359. doi: 10.4319/lo.1996.41.2.0352
    Bush R T, McInerney F A. 2013. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochimica et Cosmochimica Acta, 117: 161–179. doi: 10.1016/j.gca.2013.04.016
    Cesar J, Grice K. 2019. Molecular fingerprint from plant biomarkers in Triassic-Jurassic petroleum source rocks from the Dampier Sub-Basin, Northwest Shelf of Australia. Marine and Petroleum Geology, 110: 189–197. doi: 10.1016/j.marpetgeo.2019.07.024
    Chu Mengfan, Sachs J P, Zhang Hailong, et al. 2020. Spatiotemporal variations of organic matter sources in two mangrove-fringed estuaries in Hainan, China. Organic Geochemistry, 147: 104066. doi: 10.1016/j.orggeochem.2020.104066
    Clift P D, Brune S, Quinteros J. 2015. Climate changes control offshore crustal structure at South China Sea continental margin. Earth and Planetary Science Letters, 420: 66–72. doi: 10.1016/j.jpgl.2015.03.032
    Clift P D, Hodges K V, Heslop D, et al. 2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 1(12): 875–880. doi: 10.1038/ngeo351
    Clift P, Lee J I, Clark M K, et al. 2002. Erosional response of South China to arc rifting and monsoonal strengthening; a record from the South China Sea. Marine Geology, 184(3/4): 207–226
    Clift P D, Wan Shiming, Blusztajn J. 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies. Earth-Science Reviews, 130: 86–102. doi: 10.1016/j.earscirev.2014.01.002
    Cranwell P A. 1973. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biology, 3(3): 259–265. doi: 10.1111/j.1365-2427.1973.tb00921.x
    Cranwell P A, Eglinton G, Robinson N. 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II. Organic Geochemistry, 11(6): 513–527. doi: 10.1016/0146-6380(87)90007-6
    Dahl K A, Oppo D W, Eglinton T I, et al. 2005. Terrigenous plant wax inputs to the Arabian Sea: Implications for the reconstruction of winds associated with the Indian Monsoon. Geochimica et Cosmochimica Acta, 69(10): 2547–2558. doi: 10.1016/j.gca.2005.01.001
    Didyk B M, Simoneit B R T, Brassell S C, et al. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272(5650): 216–222. doi: 10.1038/272216a0
    Diefendorf A F, Freeman K H, Wing S L, et al. 2011. Production of n-alkyl lipids in living plants and implications for the geologic past. Geochimica et Cosmochimica Acta, 75(23): 7472–7485. doi: 10.1016/j.gca.2011.09.028
    Ding Wenjing, Hou Dujie, Gan Jun, et al. 2021. Palaeovegetation variation in response to the late Oligocene-early Miocene East Asian summer monsoon in the Ying-Qiong Basin, South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110205
    Ding Wenjing, Hou Dujie, Gan Jun, et al. 2022a. Sedimentary geochemical records of late Miocene-early Pliocene palaeovegetation and palaeoclimate evolution in the Ying-Qiong Basin, South China Sea. Marine Geology, 445: 106750. doi: 10.1016/j.margeo.2022.106750
    Ding Wenjing, Hou Dujie, Gan Jun, et al. 2022b. Aromatic hydrocarbon signatures of the late Miocene-early Pliocene in the Yinggehai Basin, South China Sea: Implications for climate variations. Marine and Petroleum Geology, 142: 105733. doi: 10.1016/j.marpetgeo.2022.105733
    Ding Wenjing, Hou Dujie, Zhang Weiwei, et al. 2018. A new genetic type of natural gases and origin analysis in Northern Songnan-Baodao Sag, Qiongdongnan Basin, South China Sea. Journal of Natural Gas Science and Engineering, 50: 384–398. doi: 10.1016/j.jngse.2017.12.003
    Ding Weiwei, Li Jiabiao, Dong Congzhi, et al. 2014. Oligocene–Miocene carbonates in the Reed Bank area, South China Sea, and their tectono-sedimentary evolution. Marine Geophysical Research, 36(2): 149–165
    Edwards D, Preston J, Kennard J, et al. 2004. Geochemical characteristics of hydrocarbons from the Vulcan Sub-basin, western Bonaparte Basin, Australia. In: Ellis G K, Baillie P W, Munson T J, eds. Proceedings of the Timor Sea Symposium, Special Publication. Darwin, Australian: Northern Territory Geological Survey, 169–201
    Eglinton G, Hamilton R J. 1967. Leaf epicuticular waxes: The waxy outer surfaces of most plants display a wide diversity of fine structure and chemical constituents. Science, 156(3780): 1322–1335. doi: 10.1126/science.156.3780.1322
    Fan Caiwei, Xu Changgui, Xu Jie. 2021. Genesis and characteristics of Miocene deep-water clastic rocks in Yinggehai and Qiongdongnan Basins, northern South China Sea. Acta Geologica Sinica-English Edition, 95(S1): 153–166
    Feng Yangwei, Ren Yan, Lyu Chengfu, et al. 2021. Seismic recognition and origin of Miocene Meishan Formation contourite deposits in the southern Qiongdongnan Basin, northern South China Sea. Acta Geologica Sinica-English Edition, 95(1): 131–141. doi: 10.1111/1755-6724.14626
    Ficken K J, Li B, Swain D L, et al. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31(7–8): 745–749
    Gagosian R B, Peltzer E T. 1986. The importance of atmospheric input of terrestrial organic material to deep sea sediments. Organic Geochemistry, 10(4–6): 661–669
    Ganai J A, Rashid S A, Romshoo S A. 2018. Evaluation of terrigenous input, diagenetic alteration and depositional conditions of Lower Carboniferous carbonates of Tethys Himalaya, India. Solid Earth Sciences, 3(2): 33–49. doi: 10.1016/j.sesci.2018.03.002
    Golonka J, Krobicki M, Pająk J, et al. 2006. Global Plate Tectonics and Paleogeography of Southeast Asia. Kraków, Poland: Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 122, http://www-odp.tamu.edu/publications/155_SR/CHAP_34.PDF [1998-05-01]/[2022-01-01]
    Goñi M A, Ruttenberg K C, Eglinton T I. 1997. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature, 389(6648): 275–278
    Grantham P J, Pesthwma J, Baak A. 1983. Triterpanes in a number of Far-Eastern crude oils. In: Bjoroy M, Albrecht C, eds. Advances in Organic Geochemistry 1981. New York: Wiley, 675–683
    Guo Zhengtang, Ruddiman W F, Hao Qingzhen, et al. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416(6877): 159–163
    Hautevelle Y, Michels R, Malartre F, et al. 2006. Vascular plant biomarkers as proxies for palaeoflora and palaeoclimatic changes at the Dogger/Malm transition of the Paris Basin (France). Organic Geochemistry, 37(5): 610–625
    Herman A B, Spicer R A, Aleksandrova G N, et al. 2017. Eocene–early Oligocene climate and vegetation change in southern China: Evidence from the Maoming Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 479: 126–137
    Hinrichs K U, Rullkötter J. 1997. Terrigenous and marine lipids in Amazon Fan sediments: implications for sedimentological reconstructions. In: Flood R D, Piper D J W, Klaus A, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 539–553, College Station, TX, USA: Texas A & M University
    Holtvoeth J, Wagner T, Horsfield B, et al. 2001. Late-Quaternary supply of terrigenous organic matter to the Congo deep-sea fan (ODP site 1075): implications for equatorial African paleoclimate. Geo-Marine Letters, 21(1): 23–33. doi: 10.1007/s003670100060
    Hoogakker B A A, Rothwell R G, Rohling E J, et al. 2004. Variations in terrigenous dilution in western Mediterranean Sea pelagic sediments in response to climate change during the last glacial cycle. Marine Geology, 211(1/2): 21–43
    Hu Dengke, Böning P, Köhler C M, et al. 2012. Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14ka in the South China Sea. Chemical Geology, 326–327: 1–18
    Huang Baojia, Li Li, Huang Heting. 2012. Origin and accumulation mechanism of shallow gases in the North Baodao Slope, Qiongdongnan Basin, South China Sea. Petroleum Exploration and Development, 39(5): 567–573. doi: 10.1016/S1876-3804(12)60077-9
    Huang Baojia, Tian Hui, Li Xushen, et al. 2016a. Geochemistry, origin and accumulation of natural gases in the deepwater area of the Qiongdongnan Basin, South China Sea. Marine and Petroleum Geology, 72: 254–267. doi: 10.1016/j.marpetgeo.2016.02.007
    Huang Baojia, Xiao Xianming, Hu Zhongliang, et al. 2005. Geochemistry and episodic accumulation of natural gases from the Ledong gas field in the Yinggehai Basin, offshore South China Sea. Organic Geochemistry, 36(12): 1689–1702. doi: 10.1016/j.orggeochem.2005.08.011
    Huang Baojia, Xiao Xianming, Li Xuxuan. 2003. Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan basins, offshore South China Sea. Organic Geochemistry, 34(7): 1009–1025. doi: 10.1016/S0146-6380(03)00036-6
    Huang Baojia, Xiao Xianminh, Li Xushen, et al. 2009. Spatial distribution and geochemistry of the nearshore gas seepages and their implications to natural gas migration in the Yinggehai Basin, offshore South China Sea. Marine and Petroleum Geology, 26(6): 928–935. doi: 10.1016/j.marpetgeo.2008.04.009
    Huang Enqing, Tian Jun. 2012. Sea-level rises at Heinrich stadials of early Marine Isotope Stage 3: Evidence of terrigenous n-alkane input in the southern South China Sea. Global and Planetary Change, 94–95: 1–12
    Huang Jie, Jiang Fuqing, Wan Shiming, et al. 2016b. Terrigenous supplies variability over the past, 22, 000yr in the southern South China Sea slope: Relation to sea level and monsoon rainfall changes. Journal of Asian Earth Sciences, 117: 317–327. doi: 10.1016/j.jseaes.2015.12.019
    Jacques F M B, Guo Shuangxing, Su Tao, et al. 2011. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: A case study of the Lincang flora from Yunnan Province. Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3–4): 318–327
    Jiwarungrueangkul T, Liu Zhifei, Zhao Yulong. 2019. Terrigenous sediment input responding to sea level change and East Asian monsoon evolution since the last deglaciation in the southern South China Sea. Global and Planetary Change, 174: 127–137. doi: 10.1016/j.gloplacha.2019.01.011
    Khare N. 2018. Evidence of increased rainfall prior to 3500 years BP as revealed by river borne terrigenous flux: A study from west coast of India. Quaternary International, 479: 100–105. doi: 10.1016/j.quaint.2017.05.055
    Kienast M, Hanebuth T J J, Pelejero C, et al. 2003. Synchroneity of meltwater pulse 1a and the Bolling warming: New evidence from the South China Sea. Geology, 31(1): 67–70. doi: 10.1130/0091-7613(2003)031<0067:SOMPAT>2.0.CO;2
    Killops S D, Raine J I, Woolhouse A D, et al. 1995. Chemostratigraphic evidence of higher-plant evolution in the Taranaki Basin, New Zealand. Organic Geochemistry, 23(5): 429–445. doi: 10.1016/0146-6380(95)00019-B
    Koch B P, Souza Filho P W M, Behling H, et al. 2011. Triterpenols in mangrove sediments as a proxy for organic matter derived from the red mangrove (Rhizophora mangle). Organic Geochemistry, 42(1): 62–73. doi: 10.1016/j.orggeochem.2010.10.007
    Kong Xiangxin, Jiang Zaixing, Han Chao, et al. 2020. Organic matter enrichment and hydrocarbon accumulation models of the marlstone in the Shulu Sag, Bohai Bay Basin, Northern China. International Journal of Coal Geology, 217: 103350. doi: 10.1016/j.coal.2019.103350
    Kumar M, Boski T, Lima-Filho F P, et al. 2019. Biomarkers as indicators of sedimentary organic matter sources and early diagenetic transformation of pentacyclic triterpenoids in a tropical mangrove ecosystem. Estuarine, Coastal and Shelf Science, 229: 106403
    Li Qianyu, Wang Pinxian, Zhao Quanhong, et al. 2006. A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea. Marine Geology, 230(3–4): 217–235
    Liu Zhifei, Zhao Yulong, Colin C, et al. 2016. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153: 238–273. doi: 10.1016/j.earscirev.2015.08.005
    Ma Ming, Chen Guojun, Lyu Chengfu, et al. 2019. The formation and evolution of the paleo-Pearl River and its influence on the source of the northern South China sea. Marine and Petroleum Geology, 106: 171–189. doi: 10.1016/j.marpetgeo.2019.04.035
    Mathur N. 2014. Tertiary oils from Upper Assam Basin, India: A geochemical study using terrigenous biomarkers. Organic Geochemistry, 76: 9–25. doi: 10.1016/j.orggeochem.2014.07.007
    Meyers P A. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34(2): 261–289. doi: 10.1016/S0146-6380(02)00168-7
    Meyers P A, Ishiwatari R. 1993. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20(7): 867–900. doi: 10.1016/0146-6380(93)90100-P
    Meyers P A, Lallier-Vergés E. 1999. Lacustrine sedimentary organic matter records of late Quaternary paleoclimates. Journal of Paleolimnology, 21(3): 345–372. doi: 10.1023/A:1008073732192
    Mignard S L A, Mulder T, Martinez P, et al. 2017. Deep-sea terrigenous organic carbon transfer and accumulation: Impact of sea-level variations and sedimentation processes off the Ogooue River (Gabon). Marine and Petroleum Geology, 85: 35–53. doi: 10.1016/j.marpetgeo.2017.04.009
    Molnar P, Boos W R, Battisti D S. 2010. Orographic controls on climate and paleoclimate of asia: Thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences, 38: 77–102. doi: 10.1146/annurev-earth-040809-152456
    Murray A P, Sosrowidjojo I B, Alexander R, et al. 1997. Oleananes in oils and sediments: Evidence of marine influence during early diagenesis?. Geochimica et Cosmochimica Acta, 61(6): 1261–1276
    Nakamura H, Sawada K, Takahashi M. 2010. Aliphatic and aromatic terpenoid biomarkers in Cretaceous and Paleogene angiosperm fossils from Japan. Organic Geochemistry 41(9): 975-980.
    Nichols J E, Peteet D M, Moy C M, et al. 2014. Impacts of climate and vegetation change on carbon accumulation in a south-central Alaskan peatland assessed with novel organic geochemical techniques. The Holocene, 24(9): 1146–1155. doi: 10.1177/0959683614540729
    Nott C J, Xie Shucheng, Avsejs L A, et al. 2000. n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation. Organic Geochemistry, 31(2–3): 231–235
    Nytoft H P, Kildahl-Andersen G, Knudsen T Š, et al. 2014. Compound “J” in Late Cretaceous/Tertiary terrigenous oils revisited: Structure elucidation of a rearranged oleanane coeluting on GC with 18β(H)-oleanane. Organic Geochemistry, 77: 89–95. doi: 10.1016/j.orggeochem.2014.09.010
    Nytoft H P, Kildahl-Andersen G, Samuel O J. 2010. Rearranged oleananes: Structural identification and distribution in a worldwide set of Late Cretaceous/Tertiary oils. Organic Geochemistry, 41(10): 1104–1118. doi: 10.1016/j.orggeochem.2010.06.008
    Otto A, Walther H, Püttmann W. 1997. Sesqui- and diterpenoid biomarkers preserved in Taxodium-rich Oligocene oxbow lake clays, Weisselster Basin, Germany. Organic Geochemistry, 26(1–2): 105–115
    Paul S, Dutta S. 2016. Terpenoid composition of fossil resins from western India: New insights into the occurrence of resin-producing trees in Early Paleogene equatorial rainforest of Asia. International Journal of Coal Geology, 167: 65–74. doi: 10.1016/j.coal.2016.09.008
    Pearson M J, Alam M. 1993. Bicadinanes and other terrestrial terpenoids in immature Oligocene sedimentary rocks and a related oil from the Surma Basin, N. E. Bangladesh. Organic Geochemistry, 20(5): 539–554. doi: 10.1016/0146-6380(93)90022-4
    Pelejero C, Kienast M, Wang Luejiang, et al. 1999. The flooding of Sundaland during the last deglaciation: imprints in hemipelagic sediments from the southern South China Sea. Earth and Planetary Science Letters, 171(4): 661–671. doi: 10.1016/S0012-821X(99)00178-8
    Petersen H I, Nytoft H P, Nielsen L H. 2004. Characterisation of oil and potential source rocks in the northeastern Song Hong Basin, Vietnam: indications of a lacustrine-coal sourced petroleum system. Organic Geochemistry, 35(4): 493–515. doi: 10.1016/j.orggeochem.2004.01.011
    Philp R P, Gilbert T D. 1986. Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Organic Geochemistry, 10(1–3): 73–84
    Qiao Yiao, Guo Zhengtang, Hao Qingzhen, et al. 2006. Grain-size features of a Miocene loess-soil sequence at Qinan: Implications on its origin. Science in China Series D, 49(7): 731–738. doi: 10.1007/s11430-006-0731-8
    Resmi P, Manju M N, Gireeshkumar T R, et al. 2016. Source characterisation of Sedimentary organic matter in mangrove ecosystems of northern Kerala, India: Inferences from bulk characterisation and hydrocarbon biomarkers. Regional Studies in Marine Science, 7: 43–54. doi: 10.1016/j.rsma.2016.05.006
    Reuter M, Kern A K, Harzhauser M, et al. 2013. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene. Gondwana Research, 23(3): 1172–1177. doi: 10.1016/j.gr.2012.07.015
    Rommerskirchen F, Plader A, Eglinton G, et al. 2006. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes. Organic Geochemistry, 37(10): 1303–1332. doi: 10.1016/j.orggeochem.2005.12.013
    Rudra A, Dutta S, Raju S V. 2017. The Paleogene vegetation and petroleum system in the tropics: A biomarker approach. Marine and Petroleum Geology, 86: 38–51. doi: 10.1016/j.marpetgeo.2017.05.008
    Rullkötter J, Peakman T M, Lo Ten Haven H. 1994. Early diagenesis of terrigenous triterpenoids and its implications for petroleum geochemistry. Organic Geochemistry, 21(3–4): 215–233
    Samuel O J, Cornford C, Jones M, et al. 2009. Improved understanding of the petroleum systems of the Niger Delta Basin, Nigeria. Organic Geochemistry, 40(4): 461–483. doi: 10.1016/j.orggeochem.2009.01.009
    Samuel O J, Kildahl-Andersen G, Nytoft H P, et al. 2010. Novel tricyclic and tetracyclic terpanes in Tertiary deltaic oils: Structural identification, origin and application to petroleum correlation. Organic Geochemistry, 41(2): 1326–1337
    Schefuß E, Ratmeyer V, Stuut J B W, et al. 2003. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochimica et Cosmochimica Acta, 67(10): 1757–1767. doi: 10.1016/S0016-7037(02)01414-X
    Seifert W K, Moldowan M J. 1978. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta, 42(1): 77–95. doi: 10.1016/0016-7037(78)90219-3
    Seifert W K, Moldowan J M, Smith G W, et al. 1978. First proof of structure of a C28-pentacyclic triterpane in petroleum. Nature, 271(5644): 436–437. doi: 10.1038/271436a0
    Shanmugam G. 1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bulletin, 69(8): 1241–1254
    Simoneit B R T, Oros D R, Karwowski Ł, et al. 2020. Terpenoid biomarkers of ambers from Miocene tropical paleoenvironments in Borneo and of their potential extant plant sources. International Journal of Coal Geology, 221: 103430. doi: 10.1016/j.coal.2020.103430
    Song Yougui, Wang Qiansuo, An Zhisheng, et al. 2018. Mid-Miocene climatic optimum: Clay mineral evidence from the red clay succession, Longzhong Basin, Northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 512: 46–55
    Spicer R A, Herman A B, Liao Wenbo, et al. 2014. Cool tropics in the Middle Eocene: Evidence from the Changchang Flora, Hainan Island, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 412: 1–16
    Sun Rui, Li Zhong, Zhao Zhigang, et al. 2020. Characteristics and origin of the Lower Oligocene marine source rocks controlled by terrigenous organic matter supply in the Baiyun Sag, northern South China Sea. Journal of Petroleum Science and Engineering, 187: 106821. doi: 10.1016/j.petrol.2019.106821
    Sun Xiangjun, Wang Pinxian. 2005. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3/4): 181–222
    Tada R, Zheng Hongbo, Clift P D. 2016. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Progress in Earth and Planetary Science, 3: 4. doi: 10.1186/s40645-016-0080-y
    Ten Haven H L, Peakman T M, Rullkötter J. 1992. Early diagenetic transformation of higher-plant triterpenoids in deep-sea sediments from Baffin Bay. Geochimica et Cosmochimica Acta, 56(5): 2001–2024. doi: 10.1016/0016-7037(92)90326-E
    Ten Haven H L, Rullkötter J. 1988. The diagenetic fate of taraxer-14-ene and oleanene isomers. Geochimica et Cosmochimica Acta, 52(10): 2543–2548. doi: 10.1016/0016-7037(88)90312-2
    Tipple B J, Pagani M. 2013. Environmental control on eastern broadleaf forest species’ leaf wax distributions and D/H ratios. Geochimica et Cosmochimica Acta, 111: 64–77. doi: 10.1016/j.gca.2012.10.042
    Urrego L E, González C, Urán G, et al. 2010. Modern pollen rain in mangroves from San Andres Island, Colombian Caribbean. Review of Palaeobotany and Palynology, 162(2): 168–182. doi: 10.1016/j.revpalbo.2010.06.006
    Van Aarssen B G K, Hessels J K C, Abbink O A, et al. 1992. The occurrence of polycyclic sesqui-, tri-, and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from Southeast Asia. Geochimica et Cosmochimica Acta, 56(3): 1231–1246. doi: 10.1016/0016-7037(92)90059-R
    Van Soelen E E, Kim J H, Santos R V, et al. 2017. A 30 Ma history of the Amazon River inferred from terrigenous sediments and organic matter on the Ceará Rise. Earth and Planetary Science Letters, 474: 40–48. doi: 10.1016/j.jpgl.2017.06.025
    Versteegh G J M, Schefuß E, Dupont L, et al. 2004. Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems. Geochimica et Cosmochimica Acta, 68(3): 411–422. doi: 10.1016/S0016-7037(03)00456-3
    Volkman J K. 2005. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. Organic Geochemistry, 36(2): 139–159. doi: 10.1016/j.orggeochem.2004.06.013
    Volkman J K, Revill A T, Bonham P I, et al. 2007. Sources of organic matter in sediments from the Ord River in tropical northern Australia. Organic Geochemistry, 38(7): 1039–1060. doi: 10.1016/j.orggeochem.2007.02.017
    Vuković N, Životić D, Mendonça Filho J G, et al. 2016. The assessment of maturation changes of humic coal organic matter—Insights from closed-system pyrolysis experiments. International Journal of Coal Geology, 154–155: 213–239
    Wan Shiming, Li Anchun, Clift P D, et al. 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3/4): 561–582
    Wan Shiming, Clift P D, Li Anchun, et al. 2010. Geochemical records in the South China Sea: implications for East Asian summer monsoon evolution over the last 20 Ma. In: Clift P D, Tada R, Zheng H, eds. Monsoon Evolution and Tectonic–Climate Linkage in Asia. London:Geological Society of London, 342: 245. doi: 10.1144/SP342.14
    Wang Huawei, Kandasamy S, Liu Qianqian, et al. 2021a. Roles of sediment supply, geochemical composition and monsoon on organic matter burial along the longitudinal mud belt in the East China Sea in modern times. Geochimica et Cosmochimica Acta, 305: 66–86. doi: 10.1016/j.gca.2021.04.025
    Wang Yanru, Lin Changsong, Zhang Zhongtao, et al. 2021b. Sedimentary evolution and controlling factors of Early-Mid Miocene Deltaic systems in the Northern Pearl River Mouth Basin, South China Sea. Scientific Reports, 11(1): 6134. doi: 10.1038/s41598-021-85369-1
    Wang L, Sarnthein M, Erlenkeuser H, et al. 1999. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology, 156(1–4): 245–284
    Waterson E J, Canuel E A. 2008. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and δ13CTOC analyses. Organic Geochemistry, 39(4): 422–439. doi: 10.1016/j.orggeochem.2008.01.011
    Wei Gangjian, Li Xianhua, Liu Ying, et al. 2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography, 21(4): PA4214
    Woodhouse A D, Oung J N, Philp R P, et al. 1992. Triterpanes and ring-A degraded triterpanes as biomarkers characteristic of Tertiary oils derived from predominantly higher plant sources. Organic Geochemistry, 18(1): 23–31. doi: 10.1016/0146-6380(92)90140-S
    Wu Piao, Hou Dujie, Gan Jun, et al. 2018. Paleoenvironment and controlling factors of oligocene source rock in the eastern deep-water area of the Qiongdongnan Basin: Evidences from organic geochemistry and palynology. Energy & Fuels, 32(7): 7423–7437
    Xiao X M, Xiong M, Tian H, et al. 2006. Determination of the source area of the Ya13–1 gas pool in the Qiongdongnan Basin, South China Sea. Organic Geochemistry, 37(9): 990–1002. doi: 10.1016/j.orggeochem.2006.06.001
    Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686–693. doi: 10.1126/science.1059412
    Zhang Gongcheng, Feng Yangwei. 2021. Preface. Acta Geologica Sinica-English Edition, 95(1): 1–6. doi: 10.1111/1755-6724.14621
    Zhang Gongcheng, Li Zengxue, Lan Lei, et al. 2021. Natural gas in large gas fields in the South China Sea is mainly coal-type gas. Natural Gas Industry, 41(11): 12–23
    Zhang Manli, Lin Changsong, He Min, et al. 2019. Stratigraphic architecture, shelf-edge delta and constraints on the development of the Late Oligocene to Early Miocene continental margin prism, the Pearl River Mouth Basin, northern South China Sea. Marine Geology, 416: 105982. doi: 10.1016/j.margeo.2019.105982
    Zhang Yifan, Liu Dongsheng, Zhang Xunhua. 2017. Neogene palynological assemblages from Qiongdongnan Basin and their paleoclimatic implications. Marine Geology & Quaternary Geology, 37(1): 93–101
    Zhang Gongcheng, Yang Haichang, Chen Ying, et al. 2014. The Baiyun Sag: A giant rich gas-generation sag in the deepwater area of the Pearl River Mouth Basin. Natural Gas Industry, 34(11): 11–25
    Zhao Meng, Shao Lei, Liang Jianshe, et al. 2015. No Red River capture since the late Oligocene: Geochemical evidence from the Northwestern South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 122: 185–194. doi: 10.1016/j.dsr2.2015.02.029
    Zhao Zhigang, Zhang Hao, Cui Yuchi, et al. 2021. Cenozoic sea-land transition and its petroleum geological significance in the northern South China Sea. Acta Geologica Sinica-English Edition, 95(1): 41–54. doi: 10.1111/1755-6724.14628
    Zhou Yi, Sheng Guoying, Fu Jiamo, et al. 2003. Triterpane and sterane biomarkers in the YA13–1 condensates from Qiongdongnan Basin, South China Sea. Chemical Geology, 199(1–4): 343–359
    Zhou Weijian, Xie Shucheng, Meyers P A, et al. 2005. Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Organic Geochemistry, 36(9): 1272–1284. doi: 10.1016/j.orggeochem.2005.04.005
    Zhu Yangmign, Sun Linting, Hao Fang, et al. 2018. Geochemical composition and origin of Tertiary oils in the Yinggehai and Qiongdongnan Basins, offshore South China Sea. Marine and Petroleum Geology, 96: 139–153. doi: 10.1016/j.marpetgeo.2018.05.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (551) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return