Volume 42 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Jin Liang, Chunhui Tao, Xiangxin Wang, Cheng Su, Wei Gao, Yadong Zhou, Weikun Xu, Xiaohe Liu, Zhongjun Ding. Geological context and vents morphology in the ultramafic-hosted Tianxiu field, Carlsberg Ridge[J]. Acta Oceanologica Sinica, 2023, 42(9): 62-70. doi: 10.1007/s13131-023-2157-y
Citation: Jin Liang, Chunhui Tao, Xiangxin Wang, Cheng Su, Wei Gao, Yadong Zhou, Weikun Xu, Xiaohe Liu, Zhongjun Ding. Geological context and vents morphology in the ultramafic-hosted Tianxiu field, Carlsberg Ridge[J]. Acta Oceanologica Sinica, 2023, 42(9): 62-70. doi: 10.1007/s13131-023-2157-y

Geological context and vents morphology in the ultramafic-hosted Tianxiu field, Carlsberg Ridge

doi: 10.1007/s13131-023-2157-y
Funds:  The National Key Research and Development Program of China under contract No. 2017YFC0306603; the Scientific Research Fund of the Second Institute of Oceanography, Ministry of Natural Resources under contract Nos JG1905 and SZ2201; the National Natural Science Foundation of China under contract No. 41806076; and the National Key Research and Development Program of China under contract No. 2021YFC2801705.
More Information
  • The Tianxiu hydrothermal field (TXHF) located on Carlsberg Ridge is one of the few active ultramafic-hosted venting systems known in the Indian Ocean. Despite numerous investigations, there is limited understanding of its sulfide structure morphology, and the factors controlling the formation of TXHF are poorly understood. In this study, we conducted detailed seafloor mapping using visual data obtained by dives using the human-occupied vehicle (HOV) Jiaolon g. The TXHF is found to be an active, off-axis, ultramafic-hosted, high-temperature hydrothermal area in which serpentine peridotite is exposed. Two main hydrothermal sites were identified, i.e., P and Y, both of which feature a complex of chimneys and beehive diffusers constituting a “chimney jungle” and isolated large steep-sided structures developed on flat-lying sulfide mounds. In addition, some sporadic inactive chimneys and outcrops of hydrothermal deposits were noted. The chimneys are rich in Fe and Zn sulfide, and lack the central fluid channel formed by focused high-temperature fluid flow. Hydrothermal venting at TXHF is likely related to low-angle detachment faults that focus and transport hydrothermal fluids away from a heat source along the valley wall. Our results complement and expand upon previous works concerning sulfide chimney morphology and their corresponding mineral paragenesis in ultramafic-hosted hydrothermal systems in the Indian Ocean and further our understanding of modern seafloor hydrothermal systems.
  • loading
  • Alt J C. 1995. Subseafloor processes in mid-ocean ridge hydrothennal systems. In: Humphris S E, Zierenberg R A, Mullineaux L S, et al., eds. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington, DC: American Geophysical Union, 91: 85–114
    Baker E T. 2017. Exploring the ocean for hydrothermal venting: New techniques, new discoveries, new insights. Ore Geology Reviews, 86: 55–69. doi: 10.1016/j.oregeorev.2017.02.006
    Barreyre T, Escartín J, Garcia R, et al. 2012. Structure, temporal evolution, and heat flux estimates from the Lucky Strike deep-sea hydrothermal field derived from seafloor image mosaics. Geochemistry, Geophysics, Geosystems, 13(4): Q04007
    Beaulieu S E, Baker E T, German C R. 2015. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?. Deep-Sea Research Part II: Topical Studies in Oceanography, 121: 202–212. doi: 10.1016/j.dsr2.2015.05.001
    Berkenbosch H A, De Ronde C E J, Gemmel J B, et al. 2012. Mineralogy and formation of black smoker chimneys from Brothers submarine volcano, Kermadec arc. Economic Geology, 107(8): 1613–1633. doi: 10.2113/econgeo.107.8.1613
    Cai Yiyang, Han Xiqiu, Qiu Zhongyan, et al. 2020. Characteristics, distribution and implication of hydrothermal minerals in Tianxiu Hydrothermal Field, Carlsberg Ridge, Northwest Indian Ocean. Marine Geology & Quaternary Geology, 40(5): 36–45
    Chen Yang, Han Xiqiu, Wang Yejian, et al. 2020. Precipitation of calcite veins in serpentinized harzburgite at Tianxiu hydrothermal field on carlsberg ridge (3.67°N), Northwest Indian Ocean: Implications for fluid circulation. Journal of Earth Science, 31(1): 91–101. doi: 10.1007/s12583-020-0876-y
    Choi S K, Pak S J, Kim J, et al. 2021. Gold and tin mineralisation in the ultramafic-hosted Cheoeum vent field, Central Indian Ridge. Mineralium Deposita, 56(5): 885–906. doi: 10.1007/s00126-020-01012-5
    de Ronde C E J, Hannington M D, Stoffers P, et al. 2005. Evolution of a submarine magmatic-hydrothermal system: Brothers volcano, southern Kermadec arc, New Zealand. Economic Geology, 100(6): 1097–1133. doi: 10.2113/gsecongeo.100.6.1097
    Delaney J R, Robigou V, McDuff R E, et al. 1992. Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 97(B13): 19663–19682. doi: 10.1029/92JB00174
    Ding Teng, Tao Chunhui, Dias Á A, et al. 2021. Sulfur isotopic compositions of sulfides along the Southwest Indian Ridge: implications for mineralization in ultramafic rocks. Mineralium Deposita, 56(5): 991–1006. doi: 10.1007/s00126-020-01025-0
    Ding Teng, Wang Jia, Tao Chunhui, et al. 2022. Trace-element compositions of sulfides from inactive Tianzuo hydrothermal field, Southwest Indian Ridge: Implications for ultramafic rocks hosting mineralization. Ore Geology Reviews, 140: 104421. doi: 10.1016/j.oregeorev.2021.104421
    Fouquet Y, Cambon P, Etoubleau J, et al. 2010. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. In: Rona P A, Devey C W, Dyment J, eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, DC: American Geophysical Union, 188: 321–367
    Fouquet Y, Cherkashov G, Charlou J L, et al. 2008. Serpentine cruise-ultramafic hosted hydrothermal deposits on the Mid-Atlantic Ridge: First submersible studies on Ashadze 1 and 2, Logatchev 2 and Krasnov vent fields. InterRidge News, 17: 16–21
    Fouquet Y, Knott R, Cambon P, et al. 1996. Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the East Pacific Rise. Earth and Planetary Science Letters, 144(1−2): 147–162. doi: 10.1016/0012-821X(96)00142-2
    Fouquet Y, Wafik A, Cambon P, et al. 1993. Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23°N). Economic Geology, 88(8): 2018–2036. doi: 10.2113/gsecongeo.88.8.2018
    Fujii M., Okino K., Sato T, et al. 2016. Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge. Earth & Planetary Science Letters, 441: 26–37
    Gallant R M, Von Damm K L. 2006. Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge. Geochemistry, Geophysics, Geosystems, 7(6): Q06018
    Gamo T, Chiba H, Yamanaka T, et al. 2001. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge. Earth and Planetary Science Letters, 193(3−4): 371–379. doi: 10.1016/S0012-821X(01)00511-8
    Genna D, Gaboury D, Roy G. 2014. Evolution of a volcanogenic hydrothermal system recorded by the behavior of LREE and Eu: Case study of the Key Tuffite at Bracemac-McLeod deposits, Matagami, Canada. Ore Geology Reviews, 63: 160–177. doi: 10.1016/j.oregeorev.2014.04.019
    German C R, Baker E T, Mevel C, et al. 1998. Hydrothermal activity along the Southwest Indian Ridge. Nature, 395(6701): 490–493. doi: 10.1038/26730
    Halbach P, Blum N, Munch U, et al. 1998. Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Mineralium Deposita, 33: 302–309. doi: 10.1007/s001260050149
    Hannington M D, de Ronde C E J, Petersen S. 2005. Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist J W, Thompson J F H, Goldfarb R J, eds. Economic Geology 100th Anniversary Volume. Littleton, CO: Society of Economic Geologists, 111–141
    Hannington M, Jamieson J, Monecke T, et al. 2011. The abundance of seafloor massive dulfide deposits. Geology, 39(12): 1155–1158. doi: 10.1130/G32468.1
    Hannington M D, Tivey M K, Larocque A C L, et al. 1995. The occurrence of gold in sulfide deposits of the TAG hydrothermal field, Mid-Atlantic Ridge. The Canadian Mineralogist, 33: 1285–1310
    Haymon R M. 1983. Growth history of hydrothermal black smoker chimneys. Nature, 301(5902): 695–698. doi: 10.1038/301695a0
    Haymon R M, Kastner M. 1981. Hot spring deposits on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis. Earth and Planetary Science Letters, 53(3): 363–381. doi: 10.1016/0012-821X(81)90041-8
    Hekinian R, Francheteaub J, Ballardc R D. 1985. Morphology and evolution of hydrothermal deposits at the axis of the East Pacific Rise. Oceanologica Acta, 8(2): 147–155
    Herzig P M, Hannington M D. 1995. Polymetallic massive sulfides at the modern seafloor a review. Ore Geology Reviews, 10(2): 95–115. doi: 10.1016/0169-1368(95)00009-7
    Jamieson J W, Hannington M D, Petersen S. 2017. Seafloor massive sulfide resources. In: Encyclopedia of Maritime and Offshore Engineering. Chichester: John Wiley & Sons
    Jiang Zijing, Han Xiqiu, Wang Yejian, et al. 2015. Characteristics of hydrothermal anomalies in water bodies near Tianshui hydrothermal area of Karlsberg Ridge in the Northwest Indian Ocean. Acta Mineralogica Sinica (in Chinese), 35(S1): 765–766
    Kelley D S, Baross J A, Delaney J R. 2002. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annual Review of Earth and Planetary Sciences, 30: 385–491. doi: 10.1146/annurev.earth.30.091201.141331
    Kinsey J C, German C R. 2013. Sustained volcanically-hosted venting at ultraslow ridges: Piccard Hydrothermal Field, Mid-Cayman Rise. Earth and Planetary Science Letters, 380: 162–168. doi: 10.1016/j.jpgl.2013.08.001
    Koski R A, Jonasson I R, Kadko D C, et al. 1994. Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 99(B3): 4813–4832. doi: 10.1029/93JB02871
    Lim D, Kim J, Kim W, et al. 2022. Characterization of geochemistry in hydrothermal sediments from the newly discovered onnuri vent field in the middle region of the Central Indian Ridge. Frontiers in Marine Science, 9: 810949. doi: 10.3389/fmars.2022.810949
    Ludwig K A, Kelley D S, Butterfield D A, et al. 2006. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geochimica et Cosmochimica Acta, 70(14): 3625–3645. doi: 10.1016/j.gca.2006.04.016
    Münch U, Halbach P, Fujimoto H, et al. 2000. Sea-floor hydrothermal mineralization from the Mt. Jourdanne, Southwest Indian Ridge. JAMSTEC, 16: 125–132
    Melchert B, Devey C W, German C R, et al. 2008. First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth and Planetary Science Letters, 275(1−2): 61–69. doi: 10.1016/j.jpgl.2008.08.010
    Meng Xingwei, Li Xiaohu, Chu Fengyou, et al. 2019. Multi-stage growth and fluid evolution of a hydrothermal sulphide chimney in the East Pacific Ridge 1–2°S hydrothermal field: constraints from in situ sulphur isotopes. Geological Magazine, 156(6): 989–1002. doi: 10.1017/S0016756818000316
    Murton B J, Baker E T, Sands C M, et al. 2006. Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge: NW Indian Ocean. Geophysical Research Letters, 33(10): L10608
    Nakamura K, Morishita T, Bach W, et al. 2009. Serpentinized troctolites exposed near the Kairei Hydrothermal Field, Central Indian Ridge: Insights into the origin of the Kairei hydrothermal fluid supporting a unique microbial ecosystem. Earth & Planetary Science Letters, 280: 128–136
    Olatunde P S, Akintoye A E. 2021. Integrated geochemical investigations on Fe-Mn nodules, polymetallic sulfides and Fe-Mn oxides recovered from marine sediments of Carlsberg Ridge, Northwest Indian Ocean. Advances in Environal Studies, 5(1): 394–403
    Peng Xiaotong, Zhou Huaiyang. 2005. Growth history of hydrothermal chimneys at EPR 9–10°N: A structural and mineralogical study. Science in China Series D: Earth Sciences, 48(11): 1891–1899. doi: 10.1360/04yd0029
    Petersen S, Kuhn K, Kuhn T, et al. 2009. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos, 112(1−2): 40–56. doi: 10.1016/j.lithos.2009.02.008
    Qiu Zhongyan, Han Xiqiu, Li Mou, et al. 2021. The temporal variability of hydrothermal activity of wocan hydrothermal field, Carlsberg Ridge, Northwest Indian Ocean. Ore Geology Reviews, 132: 103999. doi: 10.1016/j.oregeorev.2021.103999
    Raju K A K, Chaubey A K, Amarnath D, et al. 2008. Morphotectonics of the Carlsberg Ridge between 62°20′ and 66°20E, Northwest Indian Ocean. Marine Geology, 252(3−4): 120–128. doi: 10.1016/j.margeo.2008.03.016
    Robigou V, Delaney J R, Stakes D S. 1993. Large massive sulfide deposits in a newly discovered active hydrothermal system, the High-Rise field, Endeavour segment, Juan de Fuca Ridge. Geophysical Research Letters, 20(17): 1887–1890. doi: 10.1029/93GL01399
    Sheng Mingwei, Tang Songqi, Cui Zhuang, et al. 2020. A joint framework for underwater sequence images stitching based on deep neural network convolutional neural network. International Journal of Advanced Robotic Systems, 17(2): 1–14
    Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge. Chinese Science Bulletin, 59: 2266–2276
    Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2012. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 40(1): 47–50. doi: 10.1130/G32389.1
    Tao Chunhui, Wu Guanghai, Deng Xianming, et al. 2013. New discovery of seafloor hydrothermal activity on the Indian Ocean Carlsberg Ridge and Southern North Atlantic Ridge—progress during the 26th Chinese COMRA cruise. Acta Oceanologica Sinica, 32(8): 85–88. doi: 10.1007/s13131-013-0345-x
    Tivey M K. 2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20(1): 50–65. doi: 10.5670/oceanog.2007.80
    Tivey M K, Stakes D S, Cook T L, et al. 1999. A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge: Results of a petrologic and geochemical study. Journal of Geophysical Research: Solid Earth, 104(B10): 22859–22883. doi: 10.1029/1999JB900107
    Van Dover C L, Humphris S E, Fornari D, et al. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science, 294(5543): 818–823. doi: 10.1126/science.1064574
    Von Damm K L. 1995. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris S E, Zierenberg R A, Mullineaux L S, et al., eds. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington, DC : American Geophysical Union, 222–247
    Von Damm K L, Buttermore L G, Oosting S E, et al. 1997. Direct observation of the evolution of a seafloor ‘black smoker’ from vapor to brine. Earth and Planetary Science Letters, 149(1−4): 101–111. doi: 10.1016/S0012-821X(97)00059-9
    Wang Yejian, Han Xiqiu, Petersen S, et al. 2018. Trace Metal Distribution in Sulfide Minerals from Ultramafic-Hosted Hydrothermal Systems: Examples from the Kairei Vent Field, Central Indian Ridge. Minerals, 8: 526
    Wang Yejian, Han Xiqiu, Zhou Yadong, et al. 2021. The Daxi Vent Field: An active mafic-hosted hydrothermal system at a non-transform offset on the slow-spreading Carlsberg Ridge, 6°48′N. Ore Geology Reviews, 129: 103888. doi: 10.1016/j.oregeorev.2020.103888
    Webber A P, Roberts S, Murton B J, et al. 2017. The formation of gold-rich seafloor sulfide deposits: Evidence from the Beebe hydrothermal vent field, Cayman Trough. Geochemistry, Geophysics, Geosystems, 18(6): 2011–2027
    Wheeler A J, Murton B, Copley J, et al. 2013. Moytirra: Discovery of the first known deep-sea hydrothermal vent field on the slow-spreading Mid-Atlantic Ridge north of the Azores. Geochemistry, Geophysics, Geosystems, 14(10): 4170–4184
    Yang Lei, Wang Xiangxin, Zhang Tongwei, et al. 2021b. Research on the application technology of manned submersible bathymetric sidescan sonar system in the abyss zone. In: 2021 OES China Ocean Acoustics. Harbin: IEEE, 293–298
    Yang Ming, Wang Yejian, Han Xiqiu, et al. 2021a. Gold mineralization in the ultramafic-hosted seafloor hydrothermal systems: examples from the Tianxiu Vent Field, Carlsberg Ridge. Geological Review (in Chinese), 67(S1): 173–174
    You Chenfeng, Bickle M J. 1998. Evolution of an active sea-floor massive sulphide deposit. Nature, 394(6694): 668–671. doi: 10.1038/29279
    Yu Junyu, Tao Chunhui, Liao Shili, et al. 2021. Resource estimation of the sulfide-rich deposits of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geology Reviews, 134: 104169. doi: 10.1016/j.oregeorev.2021.104169
    Zhou Yadong, Chen Chong, Zhang Dongsheng, et al. 2022. Delineating biogeographic regions in Indian Ocean deep-sea vents and implications for conservation. Diversity and Distributions, 28(12): 2858–2870. doi: 10.1111/ddi.13535
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (69) PDF downloads(10) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint